You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
DeepErwin is a python 3.8+ package that implements and optimizes JAX 2.x wave function models for numerical solutions to the multi-electron Schrödinger equation. DeepErwin supports weight-sharing when optimizing wave functions for multiple nuclear geometries and the usage of pre-trained neural network weights to accelerate optimization.
The official repository for our paper "Are Neural Nets Modular? Inspecting Functional Modularity Through Differentiable Weight Masks". We develop a method for analyzing emerging functional modularity in neural networks based on differentiable weight masks and use it to point out important issues in current-day neural networks.