Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

SNOW-1638407 Added some simple tests for TimedeltaIndex indexing #2183

Merged
Merged
Changes from 2 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
110 changes: 110 additions & 0 deletions tests/integ/modin/types/test_timedelta_indexing.py
Original file line number Diff line number Diff line change
Expand Up @@ -389,3 +389,113 @@ def loc_enlargement(key, item, df):
loc_enlargement(key, item, snow_td.copy()).to_pandas().dtypes,
snow_td.dtypes,
)


@pytest.mark.parametrize(
"key, join_count",
[(2, 2), ([2, 1], 2), (slice(1, None), 0), ([True, False, False, True], 1)],
)
def test_index_get_timedelta(key, join_count):
td_idx = native_pd.TimedeltaIndex(
[
native_pd.Timedelta("1 days 1 hour"),
native_pd.Timedelta("2 days 1 minute"),
native_pd.Timedelta("3 days 1 nanoseconds"),
native_pd.Timedelta("100 nanoseconds"),
]
)
snow_td_idx = pd.TimedeltaIndex(td_idx)

with SqlCounter(query_count=1, join_count=join_count):
if is_scalar(key):
assert snow_td_idx[key] == td_idx[key]
else:
eval_snowpark_pandas_result(snow_td_idx, td_idx, lambda idx: idx[key])


@pytest.mark.parametrize(
"key, api, query_count, join_count",
[
[2, "iat", 1, 2],
[native_pd.Timedelta("1 days 1 hour"), "at", 2, 2],
[[2, 1], "iloc", 1, 2],
[
[
native_pd.Timedelta("1 days 1 hour"),
native_pd.Timedelta("1 days 1 hour"),
],
"loc",
1,
1,
],
[slice(1, None), "iloc", 1, 0],
[[True, False, False, True], "iloc", 1, 1],
[[True, False, False, True], "loc", 1, 1],
],
)
def test_series_with_timedelta_index(key, api, query_count, join_count):
td_idx = native_pd.TimedeltaIndex(
[
native_pd.Timedelta("1 days 1 hour"),
native_pd.Timedelta("2 days 1 minute"),
native_pd.Timedelta("3 days 1 nanoseconds"),
native_pd.Timedelta("100 nanoseconds"),
]
)
snow_td_idx = pd.TimedeltaIndex(td_idx)

data = [1, 2, 3, 4]
native_series = native_pd.Series(data, index=td_idx)
snow_series = pd.Series(data, index=snow_td_idx)

with SqlCounter(query_count=query_count, join_count=join_count):
if is_scalar(key):
assert getattr(snow_series, api)[key] == getattr(native_series, api)[key]
else:
eval_snowpark_pandas_result(
snow_series, native_series, lambda s: getattr(s, api)[key]
)


@pytest.mark.parametrize(
"key, api, query_count, join_count",
[
[2, "iat", 1, 2],
[native_pd.Timedelta("1 days 1 hour"), "at", 2, 2],
[[2, 1], "iloc", 1, 2],
[
[
native_pd.Timedelta("1 days 1 hour"),
native_pd.Timedelta("1 days 1 hour"),
],
"loc",
1,
1,
],
[slice(1, None), "iloc", 1, 0],
[[True, False, False, True], "iloc", 1, 1],
[[True, False, False, True], "loc", 1, 1],
],
)
def test_df_with_timedelta_index(key, api, query_count, join_count):
td_idx = native_pd.TimedeltaIndex(
[
native_pd.Timedelta("1 days 1 hour"),
native_pd.Timedelta("2 days 1 minute"),
native_pd.Timedelta("3 days 1 nanoseconds"),
native_pd.Timedelta("100 nanoseconds"),
]
)
snow_td_idx = pd.TimedeltaIndex(td_idx)

data = [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]]
native_df = native_pd.DataFrame(data, index=td_idx)
snow_df = pd.DataFrame(data, index=snow_td_idx)

with SqlCounter(query_count=query_count, join_count=join_count):
if is_scalar(key):
assert getattr(snow_df, api)[key, 0] == getattr(native_df, api)[key, 0]
else:
eval_snowpark_pandas_result(
snow_df, native_df, lambda s: getattr(s, api)[key]
)
Loading