Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Ensure HMA diagnostic report is 1.0 for integer primary/foreign key with very large values #2314

Merged
merged 6 commits into from
Dec 16, 2024
Merged
Show file tree
Hide file tree
Changes from 2 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 4 additions & 2 deletions sdv/sampling/hierarchical_sampler.py
Original file line number Diff line number Diff line change
Expand Up @@ -207,7 +207,7 @@ def _sample_children(self, table_name, sampled_data, scale=1.0):
self._enforce_table_size(child_name, table_name, scale, sampled_data)

if child_name not in sampled_data: # Sample based on only 1 parent
for _, row in sampled_data[table_name].iterrows():
for _, row in sampled_data[table_name].astype(object).iterrows():
self._add_child_rows(
child_name=child_name,
parent_name=table_name,
Expand All @@ -219,7 +219,9 @@ def _sample_children(self, table_name, sampled_data, scale=1.0):

if child_name not in sampled_data: # No child rows sampled, force row creation
num_rows_key = f'__{child_name}__{foreign_key}__num_rows'
max_num_child_index = sampled_data[table_name][num_rows_key].idxmax()
max_num_child_index = pd.to_numeric(
sampled_data[table_name][num_rows_key], errors='coerce'
).idxmax()
parent_row = sampled_data[table_name].iloc[max_num_child_index]

self._add_child_rows(
Expand Down
73 changes: 73 additions & 0 deletions tests/integration/multi_table/test_hma.py
Original file line number Diff line number Diff line change
Expand Up @@ -1480,6 +1480,79 @@ def test_sampling_with_unknown_sdtype_numerical_column(self):
assert all(pd.api.types.is_numeric_dtype(dtype) for dtype in numeric_data)
assert all(dtype == 'object' for dtype in object_data)

def test_large_integer_ids(self):
"""Test that HMASynthesizer can handle large integer IDs correctly GH#919."""
# Setup
table_1 = pd.DataFrame({
'col_1': [1, 2, 3],
'col_3': [7, 8, 9],
'col_2': [4, 5, 6],
})
table_2 = pd.DataFrame({
'col_A': [1, 1, 2],
'col_B': ['d', 'e', 'f'],
'col_C': ['g', 'h', 'i'],
})
metadata = Metadata.load_from_dict({
'tables': {
'table_1': {
'columns': {
'col_1': {'sdtype': 'id', 'regex_format': '[1-9]{17}'},
'col_2': {'sdtype': 'numerical'},
'col_3': {'sdtype': 'numerical'},
},
'primary_key': 'col_1',
},
'table_2': {
'columns': {
'col_A': {'sdtype': 'id', 'regex_format': '[1-9]{17}'},
'col_B': {'sdtype': 'categorical'},
'col_C': {'sdtype': 'categorical'},
},
},
},
'relationships': [
{
'parent_table_name': 'table_1',
'child_table_name': 'table_2',
'parent_primary_key': 'col_1',
'child_foreign_key': 'col_A',
}
],
})
data = {
'table_1': table_1,
'table_2': table_2,
}

# Run
synthesizer = HMASynthesizer(metadata, verbose=False)
synthesizer.fit(data)
synthetic_data = synthesizer.sample()

# Assert
# Check that IDs match the regex pattern
for table_name, table in synthetic_data.items():
for col in table.columns:
if metadata.tables[table_name].columns[col].get('sdtype') == 'id':
values = table[col].astype(str)
assert all(len(str(v)) == 17 for v in values), (
f'ID length mismatch in {table_name}.{col}'
)
assert all(v.isdigit() for v in values), (
f'Non-digit characters in {table_name}.{col}'
)

# Check relationships are preserved
child_fks = set(synthetic_data['table_2']['col_A'])
parent_pks = set(synthetic_data['table_1']['col_1'])
assert child_fks.issubset(parent_pks), 'Foreign key constraint violated'

# Check that the diagnostic report is 1.0
report = DiagnosticReport()
report.generate(data, synthetic_data, metadata.to_dict(), verbose=False)
assert report.get_score() == 1.0


@pytest.mark.parametrize('num_rows', [(10), (1000)])
def test_hma_0_1_child(num_rows):
Expand Down
20 changes: 15 additions & 5 deletions tests/unit/sampling/test_hierarchical_sampler.py
Original file line number Diff line number Diff line change
Expand Up @@ -221,13 +221,13 @@ def _add_child_rows(child_name, parent_name, parent_row, sampled_data, num_rows=
call(
child_name='sessions',
parent_name='users',
parent_row=SeriesMatcher(pd.Series({'user_id': 1}, name=0)),
parent_row=SeriesMatcher(pd.Series({'user_id': 1}, name=0, dtype=object)),
sampled_data=result,
),
call(
child_name='sessions',
parent_name='users',
parent_row=SeriesMatcher(pd.Series({'user_id': 3}, name=1)),
parent_row=SeriesMatcher(pd.Series({'user_id': 3}, name=1, dtype=object)),
sampled_data=result,
),
]
Expand Down Expand Up @@ -277,13 +277,20 @@ def _add_child_rows(child_name, parent_name, parent_row, sampled_data, num_rows=
instance._null_foreign_key_percentages = {'__sessions__user_id': 0}

# Run
result = {'users': pd.DataFrame({'user_id': [1], '__sessions__user_id__num_rows': [1]})}
result = {
'users': pd.DataFrame({
'user_id': [1],
'__sessions__user_id__num_rows': pd.Series([1], dtype=object),
})
}
BaseHierarchicalSampler._sample_children(
self=instance, table_name='users', sampled_data=result
)

# Assert
expected_parent_row = pd.Series({'user_id': 1, '__sessions__user_id__num_rows': 1}, name=0)
expected_parent_row = pd.Series(
{'user_id': 1, '__sessions__user_id__num_rows': 1}, name=0, dtype=object
)
expected_calls = [
call(
child_name='sessions',
Expand All @@ -300,7 +307,10 @@ def _add_child_rows(child_name, parent_name, parent_row, sampled_data, num_rows=
),
]
expected_result = {
'users': pd.DataFrame({'user_id': [1], '__sessions__user_id__num_rows': [1]}),
'users': pd.DataFrame({
'user_id': [1],
'__sessions__user_id__num_rows': pd.Series([1], dtype=object),
}),
'sessions': pd.DataFrame({
'user_id': [1],
'session_id': ['a'],
Expand Down
Loading