Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

azureaisearch: add semantic search mode support for async queries #17335

Merged
merged 5 commits into from
Dec 23, 2024
Merged
Changes from 4 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -30,9 +30,9 @@
)
from llama_index.vector_stores.azureaisearch.azureaisearch_utils import (
create_node_from_result,
process_batch_results,
create_search_request,
handle_search_error,
process_batch_results,
)

logger = logging.getLogger(__name__)
Expand Down Expand Up @@ -398,10 +398,10 @@ async def _acreate_index(self, index_name: Optional[str]) -> None:
ExhaustiveKnnParameters,
HnswAlgorithmConfiguration,
HnswParameters,
SearchableField,
SearchField,
SearchFieldDataType,
SearchIndex,
SearchableField,
SemanticConfiguration,
SemanticField,
SemanticPrioritizedFields,
Expand Down Expand Up @@ -1576,11 +1576,11 @@ def _create_query_vector(self) -> Optional[List[Any]]:
return vector_queries

def _create_query_result(
self, search_query: str, vector_queries: Optional[List[Any]]
self, search_query: str, vectors: Optional[List[Any]]
) -> VectorStoreQueryResult:
results = self._search_client.search(
search_text=search_query,
vector_queries=vector_queries,
vector_queries=vectors,
top=self._query.similarity_top_k,
select=self._select_fields,
filter=self._odata_filter,
Expand Down Expand Up @@ -1631,5 +1631,61 @@ def _create_query_result(
nodes=node_result, similarities=score_result, ids=id_result
)

async def _acreate_query_result(
self, search_query: str, vectors: Optional[List[Any]]
) -> VectorStoreQueryResult:
results = await self._async_search_client.search(
search_text=search_query,
vector_queries=vectors,
top=self._query.similarity_top_k,
select=self._select_fields,
filter=self._odata_filter,
query_type="semantic",
semantic_configuration_name="mySemanticConfig",
)

id_result = []
node_result = []
score_result = []
async for result in results:
node_id = result[self._field_mapping["id"]]
metadata_str = result[self._field_mapping["metadata"]]
metadata = json.loads(metadata_str) if metadata_str else {}
# use reranker_score instead of score
score = result["@search.reranker_score"]
chunk = result[self._field_mapping["chunk"]]

try:
node = metadata_dict_to_node(metadata)
node.set_content(chunk)
except Exception:
# NOTE: deprecated legacy logic for backward compatibility
metadata, node_info, relationships = legacy_metadata_dict_to_node(
metadata
)

node = TextNode(
text=chunk,
id_=node_id,
metadata=metadata,
start_char_idx=node_info.get("start", None),
end_char_idx=node_info.get("end", None),
relationships=relationships,
)

logger.debug(f"Retrieved node id {node_id} with node data of {node}")

id_result.append(node_id)
node_result.append(node)
score_result.append(score)

logger.debug(
f"Search query '{search_query}' returned {len(id_result)} results."
)

return VectorStoreQueryResult(
nodes=node_result, similarities=score_result, ids=id_result
)


CognitiveSearchVectorStore = AzureAISearchVectorStore
Loading