Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Handle multi-vector in exact search scenario #1378

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
71 changes: 38 additions & 33 deletions src/main/java/org/opensearch/knn/index/query/KNNWeight.java
Original file line number Diff line number Diff line change
Expand Up @@ -9,42 +9,40 @@
import org.apache.commons.lang.StringUtils;
import org.apache.lucene.index.BinaryDocValues;
import org.apache.lucene.index.DocValues;
import org.apache.lucene.index.FieldInfo;
import org.apache.lucene.index.FilterLeafReader;
import org.apache.lucene.index.LeafReaderContext;
import org.apache.lucene.index.SegmentReader;
import org.apache.lucene.search.DocIdSetIterator;
import org.apache.lucene.search.Explanation;
import org.apache.lucene.search.FilteredDocIdSetIterator;
import org.apache.lucene.search.HitQueue;
import org.apache.lucene.search.ScoreDoc;
import org.apache.lucene.search.Scorer;
import org.apache.lucene.search.Weight;
import org.apache.lucene.store.FSDirectory;
import org.apache.lucene.store.FilterDirectory;
import org.apache.lucene.util.BitSet;
import org.apache.lucene.util.BitSetIterator;
import org.apache.lucene.util.Bits;
import org.apache.lucene.util.BytesRef;
import org.apache.lucene.util.DocIdSetBuilder;
import org.apache.lucene.util.FixedBitSet;
import org.opensearch.common.io.PathUtils;
import org.opensearch.knn.common.KNNConstants;
import org.opensearch.knn.index.KNNSettings;
import org.opensearch.knn.index.SpaceType;
import org.opensearch.knn.index.codec.util.KNNVectorSerializer;
import org.opensearch.knn.index.codec.util.KNNVectorSerializerFactory;
import org.opensearch.knn.jni.JNIService;
import org.opensearch.knn.index.memory.NativeMemoryAllocation;
import org.opensearch.knn.index.memory.NativeMemoryCacheManager;
import org.opensearch.knn.index.memory.NativeMemoryEntryContext;
import org.opensearch.knn.index.memory.NativeMemoryLoadStrategy;
import org.opensearch.knn.index.query.filtered.FilteredIdsKNNIterator;
import org.opensearch.knn.index.query.filtered.NestedFilteredIdsKNNIterator;
import org.opensearch.knn.index.util.KNNEngine;
import org.apache.lucene.index.FieldInfo;
import org.apache.lucene.index.FilterLeafReader;
import org.apache.lucene.index.LeafReaderContext;
import org.apache.lucene.index.SegmentReader;
import org.apache.lucene.search.DocIdSetIterator;
import org.apache.lucene.search.Explanation;
import org.apache.lucene.search.Scorer;
import org.apache.lucene.search.Weight;
import org.apache.lucene.store.FSDirectory;
import org.apache.lucene.store.FilterDirectory;
import org.apache.lucene.util.DocIdSetBuilder;
import org.opensearch.common.io.PathUtils;
import org.opensearch.knn.indices.ModelDao;
import org.opensearch.knn.indices.ModelMetadata;
import org.opensearch.knn.jni.JNIService;
import org.opensearch.knn.plugin.stats.KNNCounter;

import java.io.ByteArrayInputStream;
import java.io.IOException;
import java.nio.file.Path;
import java.util.Arrays;
Expand Down Expand Up @@ -306,33 +304,23 @@ private Map<Integer, Float> doANNSearch(final LeafReaderContext context, final i
}

private Map<Integer, Float> doExactSearch(final LeafReaderContext leafReaderContext, final int[] filterIdsArray) throws IOException {
final SegmentReader reader = (SegmentReader) FilterLeafReader.unwrap(leafReaderContext.reader());
final FieldInfo fieldInfo = reader.getFieldInfos().fieldInfo(knnQuery.getField());
float[] queryVector = this.knnQuery.getQueryVector();
try {
final BinaryDocValues values = DocValues.getBinary(leafReaderContext.reader(), fieldInfo.getName());
final SpaceType spaceType = getSpaceType(fieldInfo);
// Creating min heap and init with MAX DocID and Score as -INF.
final HitQueue queue = new HitQueue(this.knnQuery.getK(), true);
ScoreDoc topDoc = queue.top();
final Map<Integer, Float> docToScore = new HashMap<>();
for (int filterId : filterIdsArray) {
int docId = values.advance(filterId);
final BytesRef value = values.binaryValue();
final ByteArrayInputStream byteStream = new ByteArrayInputStream(value.bytes, value.offset, value.length);
final KNNVectorSerializer vectorSerializer = KNNVectorSerializerFactory.getSerializerByStreamContent(byteStream);
final float[] vector = vectorSerializer.byteToFloatArray(byteStream);
// Calculates a similarity score between the two vectors with a specified function. Higher similarity
// scores correspond to closer vectors.
float score = spaceType.getVectorSimilarityFunction().compare(queryVector, vector);
if (score > topDoc.score) {
topDoc.score = score;
FilteredIdsKNNIterator iterator = getFilteredKNNIterator(leafReaderContext, filterIdsArray);
int docId;
while ((docId = iterator.nextDoc()) != DocIdSetIterator.NO_MORE_DOCS) {
if (iterator.score() > topDoc.score) {
topDoc.score = iterator.score();
topDoc.doc = docId;
// As the HitQueue is min heap, updating top will bring the doc with -INF score or worst score we
// have seen till now on top.
topDoc = queue.updateTop();
}
}

// If scores are negative we will remove them.
// This is done, because there can be negative values in the Heap as we init the heap with Score as -INF.
// If filterIds < k, the some values in heap can have a negative score.
Expand All @@ -352,6 +340,23 @@ private Map<Integer, Float> doExactSearch(final LeafReaderContext leafReaderCont
return Collections.emptyMap();
}

private FilteredIdsKNNIterator getFilteredKNNIterator(final LeafReaderContext leafReaderContext, final int[] filterIdsArray)
throws IOException {
final SegmentReader reader = (SegmentReader) FilterLeafReader.unwrap(leafReaderContext.reader());
final FieldInfo fieldInfo = reader.getFieldInfos().fieldInfo(knnQuery.getField());
final BinaryDocValues values = DocValues.getBinary(leafReaderContext.reader(), fieldInfo.getName());
final SpaceType spaceType = getSpaceType(fieldInfo);
return knnQuery.getParentsFilter() == null
? new FilteredIdsKNNIterator(filterIdsArray, knnQuery.getQueryVector(), values, spaceType)
: new NestedFilteredIdsKNNIterator(
filterIdsArray,
knnQuery.getQueryVector(),
values,
spaceType,
knnQuery.getParentsFilter().getBitSet(leafReaderContext)
);
}

private Scorer convertSearchResponseToScorer(final Map<Integer, Float> docsToScore) throws IOException {
final int maxDoc = Collections.max(docsToScore.keySet()) + 1;
final DocIdSetBuilder docIdSetBuilder = new DocIdSetBuilder(maxDoc);
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,74 @@
/*
* Copyright OpenSearch Contributors
* SPDX-License-Identifier: Apache-2.0
*/

package org.opensearch.knn.index.query.filtered;

import org.apache.lucene.index.BinaryDocValues;
import org.apache.lucene.search.DocIdSetIterator;
import org.apache.lucene.util.BytesRef;
import org.opensearch.knn.index.SpaceType;
import org.opensearch.knn.index.codec.util.KNNVectorSerializer;
import org.opensearch.knn.index.codec.util.KNNVectorSerializerFactory;

import java.io.ByteArrayInputStream;
import java.io.IOException;

/**
* Inspired by DiversifyingChildrenFloatKnnVectorQuery in lucene
* https://github.com/apache/lucene/blob/7b8aece125aabff2823626d5b939abf4747f63a7/lucene/join/src/java/org/apache/lucene/search/join/DiversifyingChildrenFloatKnnVectorQuery.java#L162
*
* The class is used in KNNWeight to score filtered KNN field by iterating filterIdsArray.
*/
public class FilteredIdsKNNIterator {
// Array of doc ids to iterate
protected final int[] filterIdsArray;
protected final float[] queryVector;
protected final BinaryDocValues binaryDocValues;
protected final SpaceType spaceType;
protected float currentScore = Float.NEGATIVE_INFINITY;
protected int currentPos = 0;

public FilteredIdsKNNIterator(
final int[] filterIdsArray,
final float[] queryVector,
final BinaryDocValues binaryDocValues,
final SpaceType spaceType
) {
this.filterIdsArray = filterIdsArray;
this.queryVector = queryVector;
this.binaryDocValues = binaryDocValues;
this.spaceType = spaceType;
}

/**
* Advance to the next doc and update score value with score of the next doc.
* DocIdSetIterator.NO_MORE_DOCS is returned when there is no more docs
*
* @return next doc id
*/
public int nextDoc() throws IOException {
if (currentPos >= filterIdsArray.length) {
return DocIdSetIterator.NO_MORE_DOCS;
}
int docId = binaryDocValues.advance(filterIdsArray[currentPos]);
currentScore = computeScore();
currentPos++;
return docId;
}

public float score() {
return currentScore;
}

protected float computeScore() throws IOException {
final BytesRef value = binaryDocValues.binaryValue();
final ByteArrayInputStream byteStream = new ByteArrayInputStream(value.bytes, value.offset, value.length);
final KNNVectorSerializer vectorSerializer = KNNVectorSerializerFactory.getSerializerByStreamContent(byteStream);
final float[] vector = vectorSerializer.byteToFloatArray(byteStream);
// Calculates a similarity score between the two vectors with a specified function. Higher similarity
// scores correspond to closer vectors.
return spaceType.getVectorSimilarityFunction().compare(queryVector, vector);
}
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,59 @@
/*
* Copyright OpenSearch Contributors
* SPDX-License-Identifier: Apache-2.0
*/

package org.opensearch.knn.index.query.filtered;

import org.apache.lucene.index.BinaryDocValues;
import org.apache.lucene.search.DocIdSetIterator;
import org.apache.lucene.util.BitSet;
import org.opensearch.knn.index.SpaceType;

import java.io.IOException;

/**
* This iterator iterates filterIdsArray to score. However, it dedupe docs per each parent doc
* of which ID is set in parentBitSet and only return best child doc with the highest score.
*/
public class NestedFilteredIdsKNNIterator extends FilteredIdsKNNIterator {
private final BitSet parentBitSet;

public NestedFilteredIdsKNNIterator(
final int[] filterIdsArray,
final float[] queryVector,
final BinaryDocValues values,
final SpaceType spaceType,
final BitSet parentBitSet
) {
super(filterIdsArray, queryVector, values, spaceType);
this.parentBitSet = parentBitSet;
}

/**
* Advance to the next best child doc per parent and update score with the best score among child docs from the parent.
* DocIdSetIterator.NO_MORE_DOCS is returned when there is no more docs
*
* @return next best child doc id
*/
@Override
public int nextDoc() throws IOException {
if (currentPos >= filterIdsArray.length) {
return DocIdSetIterator.NO_MORE_DOCS;
}
currentScore = Float.NEGATIVE_INFINITY;
int currentParent = parentBitSet.nextSetBit(filterIdsArray[currentPos]);
int bestChild = -1;
while (currentPos < filterIdsArray.length && filterIdsArray[currentPos] < currentParent) {
binaryDocValues.advance(filterIdsArray[currentPos]);
float score = computeScore();
if (score > currentScore) {
bestChild = filterIdsArray[currentPos];
currentScore = score;
}
currentPos++;
}

return bestChild;
}
}
11 changes: 11 additions & 0 deletions src/test/java/org/opensearch/knn/common/Constants.java
Original file line number Diff line number Diff line change
@@ -0,0 +1,11 @@
/*
* Copyright OpenSearch Contributors
* SPDX-License-Identifier: Apache-2.0
*/

package org.opensearch.knn.common;

public class Constants {
public static final String FIELD_FILTER = "filter";
public static final String FIELD_TERM = "term";
}
Loading
Loading