Pytorch Implementation for Genetics Classification. For further explanation please read my blog: Bridging the Gap Between Genetics and Neural Networks
Step 1: Generate the Embedding Matrix (optional)
python utils_helpers.py
Step 2: Train the Network
python run_tests.py -file_name your_file_name.pkl -batch_size 64 -n_epochs 1000 -use_embed_layer 0 -fold 1 -patience 100 -hidden_sizes 50 -dropout_1 0.8 -dropout_2 0.5
Parameters
Name | Required | Type | Description |
---|---|---|---|
file_name | required | str | bases and labels |
batch_size | required | int | batch sizes [32, 64, 128, 256] |
n_epochs | required | int | number of epochs |
use_embed_layer | required | int | using the auxiliary network |
fold | optional | int | fold of the embedding dataset |
patience | optional | int | patience of the early stopping |
hidden_sizes | required | int | hidden layer unit sizes |
dropout_1 | required | float | dropout of the first hidden layer |
dropout_2 | required | float | dropout of the second hidden layer |
Must
- Torch
- Numpy
Optional
- Matplotlib
- Pickle