Skip to content

Latest commit

 

History

History
35 lines (27 loc) · 1.34 KB

README.md

File metadata and controls

35 lines (27 loc) · 1.34 KB

Genetics Classification Using Neural Networks

Pytorch Implementation for Genetics Classification. For further explanation please read my blog: Bridging the Gap Between Genetics and Neural Networks

Usage

Step 1: Generate the Embedding Matrix (optional) python utils_helpers.py

Step 2: Train the Network python run_tests.py -file_name your_file_name.pkl -batch_size 64 -n_epochs 1000 -use_embed_layer 0 -fold 1 -patience 100 -hidden_sizes 50 -dropout_1 0.8 -dropout_2 0.5

Parameters

Name Required Type Description
file_name required str bases and labels
batch_size required int batch sizes [32, 64, 128, 256]
n_epochs required int number of epochs
use_embed_layer required int using the auxiliary network
fold optional int fold of the embedding dataset
patience optional int patience of the early stopping
hidden_sizes required int hidden layer unit sizes
dropout_1 required float dropout of the first hidden layer
dropout_2 required float dropout of the second hidden layer

Requirements

Must

  • Torch
  • Numpy

Optional

  • Matplotlib
  • Pickle