Skip to content

mi2rl/L-R-marker-inpainting

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 
 
 
 
 

Repository files navigation


Enhancing Deep Learning Based Classifiers with Inpainting Anatomical Side Markers (L/R Markers) for Multi-center Trials

https://user-images.githubusercontent.com/46750574/149261819-4a7878aa-643f-4309-b301-96add4405b3a.png

Requirements:

  • Install python3.
  • Install tensorflow (tested on Release 1.3.0, 1.4.0, 1.5.0, 1.6.0, 1.7.0).
  • Install tensorflow toolkit neuralgym (run pip install git+https://github.com/JiahuiYu/neuralgym).
  • Install MI2RLNet v1 L/R mark detection model (https://github.com/mi2rl/MI2RLNet)

Directory Architecture

|---------- inpaint_ops.py (inpainting operator)

|---------- checkpoint (input our pretrained model)

|---------- inpaint_model.py (inpainting model)

|---------- inpaint.yml (hyper parameter)


Preprocessing

  • minmax scaling (npy format)
  • image size : 1024 x 1024 x 1

Weight link

https://drive.google.com/drive/folders/17IiClqWW2YHUzPtKmgL4dR6RIKLoYNxK?usp=sharing


Inference

CUDA_VISIBLE_DEVICES='gpu_id' python [test.py](<http://test.py/>) \\
--image 'image path' \\
--mask 'detection mask path' \\
--output 'output path' \\
--checkpoint_dir './checkpoint/pretrained model path'

Result

https://user-images.githubusercontent.com/46750574/149261595-5e997a81-79ae-4fe3-9329-c5a715e6d88e.png


References

[1] Generative Image Inpainting with Contextual Attention; https://arxiv.org/abs/2111.06377. https://github.com/JiahuiYu/generative_inpainting

[2] An Open Medical Platform to Share Source Code and Various Pre-Trained Weights for Models to Use in Deep Learning Research https://kjronline.org/DOIx.php?id=10.3348/kjr.2021.0170, https://github.com/mi2rl/MI2RLNet


Contributing**

If you'd like to have any suggestions for these guidelines, you can contact us at [email protected] or open an issue on this GitHub repository.

All contributions welcome!

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages