-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinpaint.yml
executable file
·69 lines (58 loc) · 1.88 KB
/
inpaint.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
# =========================== Basic Settings ===========================
# machine info
num_gpus_per_job: 1 # number of gpus each job need
num_cpus_per_job: 8 # number of gpus each job need
num_hosts_per_job: 1
memory_per_job: 32 # number of gpus each job need
# gpu_type: 'nvidia-tesla-p100'
# parameters
name: places2_gated_conv_v100 # any name
# model_restore: 'logs/npy_whole_2' # logs/places2_gated_conv
model_restore: 'logs/npy_whole_crop' # logs/places2_gated_conv
# model_restore: '' # logs/places2_gated_conv
# dataset: 'places2' # 'tmnist', 'dtd', 'places2', 'celeba', 'imagenet', 'cityscapes'
dataset: 'npy_whole' # 'tmnist', 'dtd', 'places2', 'celeba', 'imagenet', 'cityscapes'
random_crop: False # Set to false when dataset is 'celebahq', meaning only resize the images to img_shapes, instead of crop img_shapes from a larger raw image. This is useful when you train on images with different resolutions like places2. In these cases, please set random_crop to true.
val: False # true if you want to view validation results in tensorboard
# log_dir: logs/places2_2000
log_dir: logs/npy_whole_crop
# log_dir: logs/npy_whole_2
gan: 'sngan'
gan_loss_alpha: 1
gan_with_mask: True
discounted_mask: True
random_seed: False
padding: 'SAME'
# training
train_spe: 4000
max_iters: 100000000
viz_max_out: 50
val_psteps: 2000
# data
data_flist:
# https://github.com/jiahuiyu/progressive_growing_of_gans_tf
npy_whole: [
'train_root',
'valid_root',
]
# http://www.image-net.org/, please use random_crop: True
imagenet: [
'data/imagenet/train_shuffled.flist',
'data/imagenet/validation_static_view.flist',
]
static_view_size: 30
img_shapes: [512, 512, 3]
height: 128
width: 128
max_delta_height: 32
max_delta_width: 32
batch_size: 8
vertical_margin: 0
horizontal_margin: 0
# loss
ae_loss: True
l1_loss: True
l1_loss_alpha: 1.
# to tune
guided: False
edge_threshold: 0.6