An Efficient and Unified Benchmark for GNN-based Recommendation.
- Homepage: https://github.com/maenzhier/GRecX
- Paper: GRecX: An Efficient and Unified Benchmark for GNN-based Recommendation
Performance on Yelp with BPR Loss:
Performance on Gowalla with BPR Loss:
We recommend you get started with some demos.
- BCE-loss
Algo | Precision@10 | Precision@20 | Recall@10 | Recall@20 | nDCG@10 | nDCG@20 |
---|---|---|---|---|---|---|
MF | 0.029597 | 0.025495 | 0.032733 | 0.056086 | 0.037332 | 0.045805 |
NGCF | 0.024713 | 0.021893 | 0.028251 | 0.049611 | 0.031357 | 0.039549 |
LightGCN | --- | --- | --- | --- | 0.037350 | 0.045872 |
UltraGCN-single | 0.030652 | 0.026790 | 0.033913 | 0.058886 | 0.038576 | 0.047766 |
UltraGCN | 0.03553 | 0.030346 | 0.039526 | 0.067028 | 0.045365 | 0.055376 |
- BPR-loss
Algo | Precision@10 | Precision@20 | Recall@10 | Recall@20 | nDCG@10 | nDCG@20 |
---|---|---|---|---|---|---|
MF | 0.031489 | 0.027303 | 0.034733 | 0.060333 | 0.040103 | 0.049406 |
NGCF | 0.030375 | 0.026699 | 0.034502 | 0.059984 | 0.038732 | 0.048351 |
LightGCN | 0.033544 | 0.028996 | 0.037277 | 0.064128 | 0.042907 | 0.052667 |
UltraGCN-single | --- | --- | --- | --- | --- | --- |
UltraGCN | --- | --- | --- | --- | --- | --- |
Note that "UltraGCN-single" uses loss with one negative sample and one negatvie loss weight
If you use GRecX in a scientific publication, we would appreciate citations to the following paper:
@misc{cai2021grecx,
title={GRecX: An Efficient and Unified Benchmark for GNN-based Recommendation},
author={Desheng Cai and Jun Hu and Shengsheng Qian and Quan Fang and Quan Zhao and Changsheng Xu},
year={2021},
eprint={2111.10342},
archivePrefix={arXiv},
primaryClass={cs.IR}
}