Skip to content

Latest commit

 

History

History
152 lines (89 loc) · 4.45 KB

README.md

File metadata and controls

152 lines (89 loc) · 4.45 KB

GRecX

An Efficient and Unified Benchmark for GNN-based Recommendation.

Homepage and Documentation

Example Benchmark: Performance on Yelp and Gowalla with BPR Loss

Performance on Yelp with BPR Loss:

Performance on Gowalla with BPR Loss:

Demo

We recommend you get started with some demos.

Preliminary Comparison

LightGCN-Yelp dataset (featureless)

  • BCE-loss
Algo Precision@10 Precision@20 Recall@10 Recall@20 nDCG@10 nDCG@20
MF 0.029597 0.025495 0.032733 0.056086 0.037332 0.045805
NGCF 0.024713 0.021893 0.028251 0.049611 0.031357 0.039549
LightGCN --- --- --- --- 0.037350 0.045872
UltraGCN-single 0.030652 0.026790 0.033913 0.058886 0.038576 0.047766
UltraGCN 0.03553 0.030346 0.039526 0.067028 0.045365 0.055376
  • BPR-loss
Algo Precision@10 Precision@20 Recall@10 Recall@20 nDCG@10 nDCG@20
MF 0.031489 0.027303 0.034733 0.060333 0.040103 0.049406
NGCF 0.030375 0.026699 0.034502 0.059984 0.038732 0.048351
LightGCN 0.033544 0.028996 0.037277 0.064128 0.042907 0.052667
UltraGCN-single --- --- --- --- --- ---
UltraGCN --- --- --- --- --- ---

Note that "UltraGCN-single" uses loss with one negative sample and one negatvie loss weight

Cite

If you use GRecX in a scientific publication, we would appreciate citations to the following paper:

@misc{cai2021grecx,
title={GRecX: An Efficient and Unified Benchmark for GNN-based Recommendation},
author={Desheng Cai and Jun Hu and Shengsheng Qian and Quan Fang and Quan Zhao and Changsheng Xu},
year={2021},
eprint={2111.10342},
archivePrefix={arXiv},
primaryClass={cs.IR}
}