Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[FSTORE-1461] Refactor Kafka out of python engine #1359

Merged
merged 16 commits into from
Jul 8, 2024
13 changes: 13 additions & 0 deletions python/hsfs/core/constants.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,19 @@
import importlib.util


# Avro
HAS_FAST_AVRO: bool = importlib.util.find_spec("fastavro") is not None
HAS_AVRO: bool = importlib.util.find_spec("avro") is not None

# Confluent Kafka
HAS_CONFLUENT_KAFKA: bool = importlib.util.find_spec("confluent_kafka") is not None
confluent_kafka_not_installed_message = (
"Confluent Kafka package not found. "
"If you want to use Kafka with Hopsworks you can install the corresponding extras "
"""`pip install hopsworks[python]` or `pip install "hopsworks[python]"` if using zsh. """
"You can also install confluent-kafka directly in your environment e.g `pip install confluent-kafka`. "
"You will need to restart your kernel if applicable."
)
# Data Validation / Great Expectations
HAS_GREAT_EXPECTATIONS: bool = (
importlib.util.find_spec("great_expectations") is not None
Expand Down
248 changes: 248 additions & 0 deletions python/hsfs/core/kafka_engine.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,248 @@
#
# Copyright 2024 Hopsworks AB
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from __future__ import annotations

import json
from io import BytesIO
from typing import TYPE_CHECKING, Any, Callable, Dict, Literal, Optional, Tuple, Union

from hsfs import client
from hsfs.client import hopsworks
from hsfs.core import storage_connector_api
from hsfs.core.constants import HAS_AVRO, HAS_CONFLUENT_KAFKA, HAS_FAST_AVRO
from tqdm import tqdm


if HAS_CONFLUENT_KAFKA:
from confluent_kafka import Consumer, KafkaError, Producer, TopicPartition

if HAS_FAST_AVRO:
from fastavro import schemaless_writer
from fastavro.schema import parse_schema
elif HAS_AVRO:
import avro.io
import avro.schema


if TYPE_CHECKING:
from hsfs.feature_group import ExternalFeatureGroup, FeatureGroup


def init_kafka_consumer(
feature_store_id: int,
offline_write_options: Dict[str, Any],
) -> Consumer:
# setup kafka consumer
consumer_config = get_kafka_config(feature_store_id, offline_write_options)
if "group.id" not in consumer_config:
consumer_config["group.id"] = "hsfs_consumer_group"

return Consumer(consumer_config)


def init_kafka_resources(
feature_group: Union[FeatureGroup, ExternalFeatureGroup],
offline_write_options: Dict[str, Any],
project_id: int,
) -> Tuple[
Producer, Dict[str, bytes], Dict[str, Callable[..., bytes]], Callable[..., bytes] :
]:
# this function is a caching wrapper around _init_kafka_resources
if feature_group._multi_part_insert and feature_group._kafka_producer:
return (
feature_group._kafka_producer,
feature_group._kafka_headers,
feature_group._feature_writers,
feature_group._writer,
)
producer, headers, feature_writers, writer = _init_kafka_resources(
feature_group, offline_write_options, project_id
)
if feature_group._multi_part_insert:
feature_group._kafka_producer = producer
feature_group._kafka_headers = headers
feature_group._feature_writers = feature_writers
feature_group._writer = writer
return producer, headers, feature_writers, writer


def _init_kafka_resources(
feature_group: Union[FeatureGroup, ExternalFeatureGroup],
offline_write_options: Dict[str, Any],
project_id: int,
) -> Tuple[
Producer, Dict[str, bytes], Dict[str, Callable[..., bytes]], Callable[..., bytes] :
]:
# setup kafka producer
producer = init_kafka_producer(
feature_group.feature_store_id, offline_write_options
)
# setup complex feature writers
feature_writers = {
feature: get_encoder_func(feature_group._get_feature_avro_schema(feature))
for feature in feature_group.get_complex_features()
}
# setup row writer function
writer = get_encoder_func(feature_group._get_encoded_avro_schema())

# custom headers for hopsworks onlineFS
headers = {
"projectId": str(project_id).encode("utf8"),
"featureGroupId": str(feature_group._id).encode("utf8"),
"subjectId": str(feature_group.subject["id"]).encode("utf8"),
}
return producer, headers, feature_writers, writer


def init_kafka_producer(
feature_store_id: int,
offline_write_options: Dict[str, Any],
) -> Producer:
# setup kafka producer
return Producer(get_kafka_config(feature_store_id, offline_write_options))


def kafka_get_offsets(
topic_name: str,
feature_store_id: int,
offline_write_options: Dict[str, Any],
high: bool,
) -> str:
consumer = init_kafka_consumer(feature_store_id, offline_write_options)
topics = consumer.list_topics(
timeout=offline_write_options.get("kafka_timeout", 6)
).topics
if topic_name in topics.keys():
# topic exists
offsets = ""
tuple_value = int(high)
for partition_metadata in topics.get(topic_name).partitions.values():
partition = TopicPartition(
topic=topic_name, partition=partition_metadata.id
)
offsets += f",{partition_metadata.id}:{consumer.get_watermark_offsets(partition)[tuple_value]}"
consumer.close()

return f" -initialCheckPointString {topic_name + offsets}"
return ""


def kafka_produce(
producer: Producer,
key: str,
encoded_row: bytes,
topic_name: str,
headers: Dict[str, bytes],
acked: callable,
debug_kafka: bool = False,
) -> None:
while True:
# if BufferError is thrown, we can be sure, message hasn't been send so we retry
try:
# produce
producer.produce(
topic=topic_name,
key=key,
value=encoded_row,
callback=acked,
headers=headers,
)

# Trigger internal callbacks to empty op queue
producer.poll(0)
break
except BufferError as e:
if debug_kafka:
print("Caught: {}".format(e))
# backoff for 1 second
producer.poll(1)


def encode_complex_features(
feature_writers: Dict[str, callable], row: Dict[str, Any]
) -> Dict[str, Any]:
for feature_name, writer in feature_writers.items():
with BytesIO() as outf:
writer(row[feature_name], outf)
row[feature_name] = outf.getvalue()
return row


def get_encoder_func(writer_schema: str) -> callable:
if HAS_FAST_AVRO:
schema = json.loads(writer_schema)
parsed_schema = parse_schema(schema)
return lambda record, outf: schemaless_writer(outf, parsed_schema, record)

parsed_schema = avro.schema.parse(writer_schema)
writer = avro.io.DatumWriter(parsed_schema)
return lambda record, outf: writer.write(record, avro.io.BinaryEncoder(outf))


def get_kafka_config(
feature_store_id: int,
write_options: Optional[Dict[str, Any]] = None,
engine: Literal["spark", "confluent"] = "confluent",
) -> Dict[str, Any]:
if write_options is None:
write_options = {}
external = not (
isinstance(client.get_instance(), hopsworks.Client)
or write_options.get("internal_kafka", False)
)

storage_connector = storage_connector_api.StorageConnectorApi().get_kafka_connector(
feature_store_id, external
)

if engine == "spark":
config = storage_connector.spark_options()
config.update(write_options)
elif engine == "confluent":
config = storage_connector.confluent_options()
config.update(write_options.get("kafka_producer_config", {}))
return config


def build_ack_callback_and_optional_progress_bar(
n_rows: int, is_multi_part_insert: bool, offline_write_options: Dict[str, Any]
) -> Tuple[Callable, Optional[tqdm]]:
if not is_multi_part_insert:
progress_bar = tqdm(
total=n_rows,
bar_format="{desc}: {percentage:.2f}% |{bar}| Rows {n_fmt}/{total_fmt} | "
"Elapsed Time: {elapsed} | Remaining Time: {remaining}",
desc="Uploading Dataframe",
mininterval=1,
)
else:
progress_bar = None

def acked(err: Exception, msg: Any) -> None:
if err is not None:
if offline_write_options.get("debug_kafka", False):
print("Failed to deliver message: %s: %s" % (str(msg), str(err)))
if err.code() in [
KafkaError.TOPIC_AUTHORIZATION_FAILED,
KafkaError._MSG_TIMED_OUT,
]:
progress_bar.colour = "RED"
raise err # Stop producing and show error
# update progress bar for each msg
if not is_multi_part_insert:
progress_bar.update()

return acked, progress_bar
Loading
Loading