-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
9 changed files
with
983 additions
and
0 deletions.
There are no files selected for viewing
Large diffs are not rendered by default.
Oops, something went wrong.
Large diffs are not rendered by default.
Oops, something went wrong.
Large diffs are not rendered by default.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,23 @@ | ||
# DeepYY1 | ||
|
||
## Required Package | ||
DeepYY1 requires: | ||
* Python3 (tested 3.5.4) | ||
* numpy (tested 1.18.1) | ||
* pandas (tested 1.0.1) | ||
* gensim (tested 3.8.1) | ||
* sklearn (tested 0.19.1) | ||
* keras (tested 2.3.1) | ||
* tensorflow (tested 1.2.1) | ||
* jupyter (tested 1.0.0) | ||
* scikit-learn (tested 0.22.1) | ||
|
||
|
||
## Usage | ||
generate feature set by 'word2vec.ipynb' | ||
train model by 'CNN_model.ipynb' | ||
load model by 'load_model.ipynb' | ||
|
||
NOTE: For files with different input sequences, you need to pay attention to the modification of parameters in code. | ||
|
||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,215 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 1, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stderr", | ||
"output_type": "stream", | ||
"text": [ | ||
"Using TensorFlow backend.\n", | ||
"F:\\anaconda\\anaconda\\envs\\tensorflow\\lib\\site-packages\\sklearn\\utils\\fixes.py:313: FutureWarning: numpy not_equal will not check object identity in the future. The comparison did not return the same result as suggested by the identity (`is`)) and will change.\n", | ||
" _nan_object_mask = _nan_object_array != _nan_object_array\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"import numpy as np\n", | ||
"import pandas as pd\n", | ||
"from keras.models import load_model\n", | ||
"import keras.backend as K\n", | ||
"from sklearn.model_selection import KFold\n", | ||
"from keras.layers import Input, Dense, Conv1D, Flatten, MaxPooling1D, Conv2D, MaxPooling2D, AveragePooling2D, Dropout, Reshape, normalization\n", | ||
"#from keras.models import Model\n", | ||
"from keras.utils import to_categorical\n", | ||
"from keras.layers.recurrent import LSTM\n", | ||
"from sklearn import metrics\n", | ||
"import random\n", | ||
"from keras.models import model_from_json" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 2, | ||
"metadata": { | ||
"scrolled": false | ||
}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"[[[ 0.12206 ]\n", | ||
" [-0.162339 ]\n", | ||
" [-0.0600364 ]\n", | ||
" ..., \n", | ||
" [ 0.0553366 ]\n", | ||
" [-0.100643 ]\n", | ||
" [ 0.0914919 ]]\n", | ||
"\n", | ||
" [[-0.00554577]\n", | ||
" [ 0.187162 ]\n", | ||
" [-0.105255 ]\n", | ||
" ..., \n", | ||
" [-0.0919779 ]\n", | ||
" [-0.0929276 ]\n", | ||
" [ 0.052444 ]]\n", | ||
"\n", | ||
" [[ 0.244697 ]\n", | ||
" [ 0.293217 ]\n", | ||
" [-0.0971591 ]\n", | ||
" ..., \n", | ||
" [-0.0711738 ]\n", | ||
" [-0.0810454 ]\n", | ||
" [ 0.0470242 ]]\n", | ||
"\n", | ||
" ..., \n", | ||
" [[ 0.358097 ]\n", | ||
" [ 0.0905413 ]\n", | ||
" [ 0.0331105 ]\n", | ||
" ..., \n", | ||
" [ 0.0624149 ]\n", | ||
" [ 0.0660773 ]\n", | ||
" [-0.0471668 ]]\n", | ||
"\n", | ||
" [[ 0.50615 ]\n", | ||
" [ 0.328114 ]\n", | ||
" [-0.0362345 ]\n", | ||
" ..., \n", | ||
" [-0.00577319]\n", | ||
" [ 0.107257 ]\n", | ||
" [-0.10438 ]]\n", | ||
"\n", | ||
" [[ 0.278387 ]\n", | ||
" [ 0.150123 ]\n", | ||
" [ 0.00274092]\n", | ||
" ..., \n", | ||
" [-0.115661 ]\n", | ||
" [ 0.135467 ]\n", | ||
" [-0.118267 ]]]\n", | ||
"X.shape: (20, 200, 1)\n", | ||
"Y.shape: (20,)\n", | ||
"20/20 [==============================] - 0s 1ms/step\n", | ||
"accuracy [0.19218169152736664, 0.69999998807907104, 0.6428571343421936, 0.89999997615814209, 0.74999988079071045, 9.0, 1.0, 5.0, 5.0]\n", | ||
"[[ 0.90504688]\n", | ||
" [ 0.85448664]\n", | ||
" [ 0.81821752]\n", | ||
" [ 0.82772362]\n", | ||
" [ 0.49430528]\n", | ||
" [ 0.98519313]\n", | ||
" [ 0.79041398]\n", | ||
" [ 0.80507296]\n", | ||
" [ 0.66225749]\n", | ||
" [ 0.77847576]\n", | ||
" [ 0.56336623]\n", | ||
" [ 0.50522602]\n", | ||
" [ 0.49430528]\n", | ||
" [ 0.60802239]\n", | ||
" [ 0.49430528]\n", | ||
" [ 0.77098638]\n", | ||
" [ 0.70090854]\n", | ||
" [ 0.49430528]\n", | ||
" [ 0.49430528]\n", | ||
" [ 0.49430528]]\n", | ||
"[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"def precision(y_true, y_pred):\n", | ||
" # Calculates the precision\n", | ||
" true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))\n", | ||
" predicted_positives = K.sum(K.round(K.clip(y_pred, 0, 1)))\n", | ||
" precision = true_positives / (predicted_positives + K.epsilon())\n", | ||
" return precision\n", | ||
"\n", | ||
"def recall(y_true, y_pred):\n", | ||
" # Calculates the recall\n", | ||
" true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))\n", | ||
" possible_positives = K.sum(K.round(K.clip(y_true, 0, 1)))\n", | ||
" recall = true_positives / (possible_positives + K.epsilon())\n", | ||
" return recall\n", | ||
"\n", | ||
"def f1(test_Y, pre_test_y):\n", | ||
" \"\"\"F1-score\"\"\"\n", | ||
" Precision = precision(test_Y, pre_test_y)\n", | ||
" Recall = recall(test_Y, pre_test_y)\n", | ||
" f1 = 2 * ((Precision * Recall) / (Precision + Recall + K.epsilon()))\n", | ||
" return f1 \n", | ||
"\n", | ||
"def TP(test_Y,pre_test_y):\n", | ||
" TP = K.sum(K.round(K.clip(test_Y * pre_test_y, 0, 1)))#TP\n", | ||
" return TP\n", | ||
"\n", | ||
"def FN(test_Y,pre_test_y):\n", | ||
" TP = K.sum(K.round(K.clip(test_Y * pre_test_y, 0, 1)))#TP\n", | ||
" P=K.sum(K.round(K.clip(test_Y, 0, 1)))\n", | ||
" FN = P-TP #FN=P-TP\n", | ||
" return FN\n", | ||
"\n", | ||
"def TN(test_Y,pre_test_y):\n", | ||
" TN=K.sum(K.round(K.clip((test_Y-K.ones_like(test_Y))*(pre_test_y-K.ones_like(pre_test_y)), 0, 1)))#TN\n", | ||
" return TN\n", | ||
"\n", | ||
"def FP(test_Y,pre_test_y):\n", | ||
" N = (-1)*K.sum(K.round(K.clip(test_Y-K.ones_like(test_Y), -1, 0)))#N\n", | ||
" TN=K.sum(K.round(K.clip((test_Y-K.ones_like(test_Y))*(pre_test_y-K.ones_like(pre_test_y)), 0, 1)))#TN\n", | ||
" FP=N-TN\n", | ||
" return FP\n", | ||
"\n", | ||
"\n", | ||
"data = np.array(pd.read_csv(\"3_test_vecs.csv\"))\n", | ||
"pos_number = 10 # NOTE: the number of postive sample in test file\n", | ||
" \n", | ||
"X1 = data[0:pos_number, 1:]\n", | ||
"Y1 = data[0:pos_number, 0]\n", | ||
"X2 = data[pos_number:, 1:]\n", | ||
"Y2 = data[pos_number:, 0]\n", | ||
"X = np.concatenate([X1, X2], 0)\n", | ||
"Y = np.concatenate([Y1, Y2], 0)\n", | ||
"#Y = Y.reshape((Y.shape[0], -1))\n", | ||
"X = np.expand_dims(X, 2)\n", | ||
"print (X)\n", | ||
"print (\"X.shape: \", X.shape)\n", | ||
"print (\"Y.shape: \", Y.shape)\n", | ||
"\n", | ||
"model_name = 'CNN_model.h5'\n", | ||
"model_back = load_model(model_name,\n", | ||
" custom_objects={'precision': precision,'recall':recall,'f1':f1,'TP':TP,'FN':FN,'TN':TN,'FP':FP})\n", | ||
"# model = load_model('pcsf.h5')\n", | ||
"accuracy = model_back.evaluate(X,Y)\n", | ||
"# print 'loss', loss\n", | ||
"print ('accuracy', accuracy)\n", | ||
"maxprobability = model_back.predict(X)\n", | ||
"np.set_printoptions(threshold=np.inf)\n", | ||
"print (maxprobability)\n", | ||
"predictclass = model_back.predict(X)\n", | ||
"predictclass = np.argmax(predictclass,axis=1)\n", | ||
"print (predictclass)" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.5.4" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 2 | ||
} |
Binary file not shown.
Oops, something went wrong.