Skip to content

Multimodal Analysis using cross-view tensor-product integration on TCGA Head and Neck Tumor samples

Notifications You must be signed in to change notification settings

jebard/multimodal-tcga-hnsc

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

11 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Multimodal Integration of TCGA-HNSC

Multimodal Dimension Reduction and Subtype Classification of Head and Neck Squamous Cell Tumors Jonathan E. Bard, Norma J. Nowak, Michael J. Buck, Satrajit Sinha

Abstract

Traditional analysis of genomic data from bulk sequencing experiments seek to group and compare sample cohorts into biologically meaningful groups. To accomplish this task, samples are often subjected to principal component analysis (PCA) and various clustering methods. These approaches, although straightforward to implement, are limited to a single data modality, capturing a limited representation of a sample. To provide a more robust method for cancer sub-type classification we have developed a computational strategy employing multimodal integration paired with spectral clustering, and modern dimension reduction techniques such as PHATE. Using this integrated approach, we have examined 514 Head and Neck Squamous Carcinoma (HNSC) tumor samples from TCGA across gene-expression, DNA-methylation, and microbiome data modalities. We show that these approaches, primarily developed for single-cell sequencing can be efficiently applied to bulk tumor sequencing data. Our multimodal analysis is able to capture the dynamic heterogeneity, identify new and refined subtypes of HNSC, and order tumor samples along well-defined cellular trajectories. Collectively, these results showcase the inherent molecular complexity of tumors and offer insights into carcinogenesis and importance of targeted therapy. Computational techniques as highlighted in our study provide an organic and powerful approach to identify granular patterns in large and noisy datasets that may otherwise be overlooked using traditional clustering and visualization strategies.

Bard JE, Nowak NJ, Buck MJ and Sinha S (2022) Multimodal Dimension Reduction and Subtype Classification of Head and Neck Squamous Cell Tumors. Front. Oncol. 12:892207. doi: 10.3389/fonc.2022.892207

https://www.frontiersin.org/articles/10.3389/fonc.2022.892207

To view our multimodal clustering results for HNSC :

https://www.cbioportal.org/comparison/overlap?comparisonId=60804602e4b0242bd5d4984c

Dependencies:

list_of_packages <- c("ggplot2", "Spectrum","phateR","gghalves","ggdist","viridis","ggpmisc","ggpubr")

lapply(list_of_packages, library, character.only = TRUE)

RDS Data files to place into /data/ : https://buffalo.box.com/s/j0bnkqmv6lg3yqhndv4xd0js5khqwhm4

About

Multimodal Analysis using cross-view tensor-product integration on TCGA Head and Neck Tumor samples

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages