Associate Director of Bioinformatics
UB Genomics and Bioinformatics Core
SUNY Buffalo
-
University at Buffalo
- Buffalo, NY
- http://ubnextgencore.buffalo.edu
Highlights
- Pro
Pinned Loading
-
Seurat to Veloctyo Code -- This is a...
Seurat to Veloctyo Code -- This is a general code chunk for running Velocyto on a Seurat object generated with 10x single-cell sequencing data. 1library(velocyto.R)
2library(pagoda2)
3library(Seurat)
45### ASSUMES Seurat object has already been computed -- in this case the object cells.combined is the result of seurat
-
fastq-to-treat
fastq-to-treat PublicHandles the preprocessing from illumina fastq files through TREAT using SnakeMake
Python 2
-
Seurat Split By - Corrected Scaling
Seurat Split By - Corrected Scaling 1wt.subset <- subset(immune.combined, subset = stim == c("CTRL"))
2ko.subset <- subset(immune.combined, subset = stim == c("Trp63-"))
34FeaturePlot(immune.combined,features = c("Foxi2","Foxc1"),split.by = "stim")
5 -
multimodal-tcga-hnsc
multimodal-tcga-hnsc PublicMultimodal Analysis using cross-view tensor-product integration on TCGA Head and Neck Tumor samples
R 1
-
Seurat to Phate to Seurat
Seurat to Phate to Seurat 12### handles the Seurat to phate conversio
34### first, grab the input required for phate (here we are using the normalized data stored in Seurat
5seurat_data <- as.data.frame(seurat.object@assays$RNA@data)
-
Seurat to Loupe
Seurat to Loupe 1library(Seurat)
2## Prep for 10x loupe browser inegration
3seurat.object
45### first we need to extract out the seurat cell barcodes and convert them back into Loupe space
Something went wrong, please refresh the page to try again.
If the problem persists, check the GitHub status page or contact support.
If the problem persists, check the GitHub status page or contact support.