Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[FEATURE] MetricListMetricRetriever - 0.18.x #9615

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
from __future__ import annotations

from itertools import chain
from typing import TYPE_CHECKING, Any, List, Sequence
from typing import TYPE_CHECKING, List, Sequence

from great_expectations.compatibility.typing_extensions import override
from great_expectations.experimental.metric_repository.metric_retriever import (
Expand All @@ -10,16 +10,13 @@
from great_expectations.experimental.metric_repository.metrics import (
ColumnMetric,
Metric,
TableMetric,
)

if TYPE_CHECKING:
from great_expectations.data_context import AbstractDataContext
from great_expectations.datasource.fluent import BatchRequest
from great_expectations.validator.metrics_calculator import (
_AbortedMetricsInfoDict,
_MetricKey,
_MetricsDict,
)


Expand All @@ -31,7 +28,7 @@ def __init__(self, context: AbstractDataContext):

@override
def get_metrics(self, batch_request: BatchRequest) -> Sequence[Metric]:
table_metrics = self._get_table_metrics(batch_request)
table_metrics = self._calculate_table_metrics(batch_request)

# We need to skip columns that do not report a type, because the metric computation
# to determine semantic type will fail.
Expand Down Expand Up @@ -68,96 +65,14 @@ def get_metrics(self, batch_request: BatchRequest) -> Sequence[Metric]:
)
return bundled_list

def _get_table_metrics(self, batch_request: BatchRequest) -> Sequence[Metric]:
table_metric_names = ["table.row_count", "table.columns", "table.column_types"]
table_metric_configs = self._generate_table_metric_configurations(
table_metric_names
)
batch_id, computed_metrics, aborted_metrics = self._compute_metrics(
batch_request, table_metric_configs
)

def _calculate_table_metrics(self, batch_request: BatchRequest) -> Sequence[Metric]:
metrics = [
self._get_table_row_count(batch_id, computed_metrics, aborted_metrics),
self._get_table_columns(batch_id, computed_metrics, aborted_metrics),
self._get_table_column_types(batch_id, computed_metrics, aborted_metrics),
Comment on lines -81 to -83
Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This was moved to the metric_retriever.py parent class

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

yessssssssssss

self._get_table_row_count(batch_request),
self._get_table_columns(batch_request),
self._get_table_column_types(batch_request),
]

return metrics

def _get_table_row_count(
self,
batch_id: str,
computed_metrics: _MetricsDict,
aborted_metrics: _AbortedMetricsInfoDict,
) -> Metric:
metric_name = "table.row_count"
value, exception = self._get_metric_from_computed_metrics(
metric_name=metric_name,
computed_metrics=computed_metrics,
aborted_metrics=aborted_metrics,
)
return TableMetric[int](
batch_id=batch_id,
metric_name=metric_name,
value=value,
exception=exception,
)

def _get_table_columns(
self,
batch_id: str,
computed_metrics: _MetricsDict,
aborted_metrics: _AbortedMetricsInfoDict,
) -> Metric:
metric_name = "table.columns"
value, exception = self._get_metric_from_computed_metrics(
metric_name=metric_name,
computed_metrics=computed_metrics,
aborted_metrics=aborted_metrics,
)
return TableMetric[List[str]](
batch_id=batch_id,
metric_name=metric_name,
value=value,
exception=exception,
)

def _get_table_column_types(
self,
batch_id: str,
computed_metrics: _MetricsDict,
aborted_metrics: _AbortedMetricsInfoDict,
) -> Metric:
metric_name = "table.column_types"
metric_lookup_key: _MetricKey = (metric_name, tuple(), "include_nested=True")
value, exception = self._get_metric_from_computed_metrics(
metric_name=metric_name,
metric_lookup_key=metric_lookup_key,
computed_metrics=computed_metrics,
aborted_metrics=aborted_metrics,
)
raw_column_types: list[dict[str, Any]] = value
# If type is not found, don't add empty type field. This can happen if our db introspection fails.
column_types_converted_to_str: list[dict[str, str]] = []
for raw_column_type in raw_column_types:
if raw_column_type.get("type"):
column_types_converted_to_str.append(
{
"name": raw_column_type["name"],
"type": str(raw_column_type["type"]),
}
)
else:
column_types_converted_to_str.append({"name": raw_column_type["name"]})

return TableMetric[List[str]](
batch_id=batch_id,
metric_name=metric_name,
value=column_types_converted_to_str,
exception=exception,
)

def _get_numeric_column_metrics(
self, batch_request: BatchRequest, column_list: List[str]
) -> Sequence[Metric]:
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,253 @@
from __future__ import annotations

from itertools import chain
from typing import TYPE_CHECKING, List, Optional, Sequence

from great_expectations.compatibility.typing_extensions import override
from great_expectations.experimental.metric_repository.metric_retriever import (
MetricRetriever,
)
from great_expectations.experimental.metric_repository.metrics import (
ColumnMetric,
Metric,
MetricTypes,
)

if TYPE_CHECKING:
from great_expectations.data_context import AbstractDataContext
from great_expectations.datasource.fluent.batch_request import BatchRequest
from great_expectations.validator.validator import (
Validator,
)


class MetricListMetricRetriever(MetricRetriever):
def __init__(self, context: AbstractDataContext):
super().__init__(context=context)
self._validator: Validator | None = None

@override
def get_metrics(
self,
batch_request: BatchRequest,
metric_list: Optional[List[MetricTypes]] = None,
) -> Sequence[Metric]:
metrics_result: List[Metric] = []

if not metric_list:
raise ValueError("metric_list cannot be empty")

self._check_valid_metric_types(metric_list)

table_metrics = self._calculate_table_metrics(
batch_request=batch_request, metric_list=metric_list
)
metrics_result.extend(table_metrics)

# exit early if only Table Metrics exist
if not self._column_metrics_in_metric_list(metric_list):
return metrics_result

table_column_types = list(
filter(
lambda m: m.metric_name == MetricTypes.TABLE_COLUMN_TYPES, table_metrics
)
)[0]

# We need to skip columns that do not report a type, because the metric computation
# to determine semantic type will fail.
exclude_column_names = self._get_columns_to_exclude(table_column_types)

numeric_column_names = self._get_numeric_column_names(
batch_request=batch_request, exclude_column_names=exclude_column_names
)
timestamp_column_names = self._get_timestamp_column_names(
batch_request=batch_request, exclude_column_names=exclude_column_names
)
numeric_column_metrics = self._get_numeric_column_metrics(
metric_list, batch_request, numeric_column_names
)
timestamp_column_metrics = self._get_timestamp_column_metrics(
metric_list, batch_request, timestamp_column_names
)
all_column_names: List[str] = self._get_all_column_names(table_metrics)
non_numeric_column_metrics = self._get_non_numeric_column_metrics(
metric_list, batch_request, all_column_names
)

bundled_list = list(
chain(
table_metrics,
numeric_column_metrics,
timestamp_column_metrics,
non_numeric_column_metrics,
)
)

return bundled_list

def _get_non_numeric_column_metrics(
rreinoldsc marked this conversation as resolved.
Show resolved Hide resolved
self,
metrics_list: List[MetricTypes],
batch_request: BatchRequest,
column_list: List[str],
) -> Sequence[Metric]:
"""Calculate column metrics for non-numeric columns.

Args:
metrics_list (List[MetricTypes]): list of metrics sent from Agent.
batch_request (BatchRequest): for current batch.
column_list (List[str]): list of non-numeric columns.

Returns:
Sequence[Metric]: List of metrics for non-numeric columns.
"""
# currently only the null-count is supported. If more metrics are added, this set will need to be updated.
column_metric_names = {MetricTypes.COLUMN_NULL_COUNT}
metrics: list[Metric] = []
metrics_list_as_set = set(metrics_list)
metrics_to_calculate = sorted(
column_metric_names.intersection(metrics_list_as_set)
)

if not metrics_to_calculate:
return metrics
else:
return self._get_column_metrics(
batch_request=batch_request,
column_list=column_list,
column_metric_names=list(metrics_to_calculate),
column_metric_type=ColumnMetric[int],
)

def _get_numeric_column_metrics(
self,
metrics_list: List[MetricTypes],
batch_request: BatchRequest,
column_list: List[str],
) -> Sequence[Metric]:
"""Calculate column metrics for numeric columns.

Args:
metrics_list (List[MetricTypes]): list of metrics sent from Agent.
batch_request (BatchRequest): for current batch.
column_list (List[str]): list of numeric columns.

Returns:
Sequence[Metric]: List of metrics for numeric columns.
"""
metrics: list[Metric] = []
column_metric_names = {
MetricTypes.COLUMN_MIN,
MetricTypes.COLUMN_MAX,
MetricTypes.COLUMN_MEAN,
MetricTypes.COLUMN_MEDIAN,
}
metrics_list_as_set = set(metrics_list)
metrics_to_calculate = sorted(
column_metric_names.intersection(metrics_list_as_set)
)
if not metrics_to_calculate:
return metrics

return self._get_column_metrics(
batch_request=batch_request,
column_list=column_list,
column_metric_names=list(metrics_to_calculate),
column_metric_type=ColumnMetric[float],
)

def _get_timestamp_column_metrics(
self,
metrics_list: List[MetricTypes],
batch_request: BatchRequest,
column_list: List[str],
) -> Sequence[Metric]:
"""Calculate column metrics for timestamp columns.

Args:
metrics_list (List[MetricTypes]): list of metrics sent from Agent.
batch_request (BatchRequest): for current batch.
column_list (List[str]): list of timestamp columns.

Returns:
Sequence[Metric]: List of metrics for timestamp columns.
"""
metrics: list[Metric] = []
column_metric_names = {
MetricTypes.COLUMN_MIN,
MetricTypes.COLUMN_MAX,
# MetricTypes.COLUMN_MEAN, # Currently not supported for timestamp in Snowflake
# MetricTypes.COLUMN_MEDIAN, # Currently not supported for timestamp in Snowflake
}
metrics_list_as_set = set(metrics_list)
metrics_to_calculate = sorted(
column_metric_names.intersection(metrics_list_as_set)
)
if not metrics_to_calculate:
return metrics

# Note: Timestamps are returned as strings for Snowflake, this may need to be adjusted
# when we support other datasources. For example in Pandas, timestamps can be returned as Timestamp().
return self._get_column_metrics(
batch_request=batch_request,
column_list=column_list,
column_metric_names=list(metrics_to_calculate),
column_metric_type=ColumnMetric[str],
)

def _calculate_table_metrics(
self, batch_request: BatchRequest, metric_list: List[MetricTypes]
) -> List[Metric]:
"""Calculate table metrics, which include row_count, column names and types.

Args:
metrics_list (List[MetricTypes]): list of metrics sent from Agent.
batch_request (BatchRequest): for current batch.

Returns:
Sequence[Metric]: List of table metrics.
"""
metrics: List[Metric] = []
if MetricTypes.TABLE_ROW_COUNT in metric_list:
metrics.append(self._get_table_row_count(batch_request=batch_request))
if MetricTypes.TABLE_COLUMNS in metric_list:
metrics.append(self._get_table_columns(batch_request=batch_request))
if MetricTypes.TABLE_COLUMN_TYPES in metric_list:
metrics.append(self._get_table_column_types(batch_request=batch_request))
return metrics

def _check_valid_metric_types(self, metric_list: List[MetricTypes]) -> bool:
"""Check whether all the metric types in the list are valid.

Args:
metric_list (List[MetricTypes]): list of MetricTypes that are passed in to MetricListMetricRetriever.

Returns:
bool: True if all the metric types in the list are valid, False otherwise.
"""
for metric in metric_list:
if metric not in MetricTypes:
return False
return True

def _column_metrics_in_metric_list(self, metric_list: List[MetricTypes]) -> bool:
"""Helper method to check whether any column metrics are present in the metric list.

Args:
metric_list (List[MetricTypes]): list of MetricTypes that are passed in to MetricListMetricRetriever.

Returns:
bool: True if any column metrics are present in the metric list, False otherwise.
"""
column_metrics: List[MetricTypes] = [
MetricTypes.COLUMN_MIN,
MetricTypes.COLUMN_MAX,
MetricTypes.COLUMN_MEDIAN,
MetricTypes.COLUMN_MEAN,
MetricTypes.COLUMN_NULL_COUNT,
]
for metric in column_metrics:
if metric in metric_list:
return True
return False
Loading
Loading