Skip to content

这是一个yolo3-keras的源码,可以用于训练自己的模型。

License

Notifications You must be signed in to change notification settings

fb1103/yolo3-keras

 
 

Repository files navigation

YOLOV3:You Only Look Once目标检测模型在Keras当中的实现


2021年2月8日更新:
加入letterbox_image的选项,关闭letterbox_image后网络的map一般可以得到提升。

目录

  1. 性能情况 Performance
  2. 所需环境 Environment
  3. 文件下载 Download
  4. 预测步骤 How2predict
  5. 训练步骤 How2train
  6. 参考资料 Reference

性能情况

训练数据集 权值文件名称 测试数据集 输入图片大小 mAP 0.5:0.95 mAP 0.5
COCO-Train2017 yolo_weights.h5 COCO-Val2017 416x416 38.1 66.8

所需环境

tensorflow-gpu==1.13.1
keras==2.1.5

文件下载

训练所需的yolo_weights.h5可以在Release里面下载。
https://github.com/bubbliiiing/yolo3-keras/releases
也可以去百度网盘下载
链接: https://pan.baidu.com/s/1izPebZ6PVU25q1we1UgSGQ 提取码: tbj3

预测步骤

a、使用预训练权重

  1. 下载完库后解压,在百度网盘下载yolo_weights.h5,放入model_data,运行predict.py,输入
img/street.jpg
  1. 利用video.py可进行摄像头检测。

b、使用自己训练的权重

  1. 按照训练步骤训练。
  2. 在yolo.py文件里面,在如下部分修改model_path和classes_path使其对应训练好的文件;model_path对应logs文件夹下面的权值文件,classes_path是model_path对应分的类
_defaults = {
    "model_path": 'model_data/yolo_weights.h5',
    "anchors_path": 'model_data/yolo_anchors.txt',
    "classes_path": 'model_data/coco_classes.txt,
    "score" : 0.5,
    "iou" : 0.3,
    # 显存比较小可以使用416x416
    # 显存比较大可以使用608x608
    "model_image_size" : (416, 416)
}
  1. 运行predict.py,输入
img/street.jpg
  1. 利用video.py可进行摄像头检测。

训练步骤

  1. 本文使用VOC格式进行训练。
  2. 训练前将标签文件放在VOCdevkit文件夹下的VOC2007文件夹下的Annotation中。
  3. 训练前将图片文件放在VOCdevkit文件夹下的VOC2007文件夹下的JPEGImages中。
  4. 在训练前利用voc2yolo3.py文件生成对应的txt。
  5. 再运行根目录下的voc_annotation.py,运行前需要将classes改成你自己的classes。注意不要使用中文标签,文件夹中不要有空格!
classes = ["aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"]
  1. 此时会生成对应的2007_train.txt,每一行对应其图片位置及其真实框的位置
  2. 在训练前需要务必在model_data下新建一个txt文档,文档中输入需要分的类,在train.py中将classes_path指向该文件,示例如下:
classes_path = 'model_data/new_classes.txt'    

model_data/new_classes.txt文件内容为:

cat
dog
...
  1. 运行train.py即可开始训练。

mAP目标检测精度计算更新

更新了get_gt_txt.py、get_dr_txt.py和get_map.py文件。
get_map文件克隆自https://github.com/Cartucho/mAP
具体mAP计算过程可参考:https://www.bilibili.com/video/BV1zE411u7Vw

Reference

https://github.com/qqwweee/keras-yolo3/
https://github.com/Cartucho/mAP

About

这是一个yolo3-keras的源码,可以用于训练自己的模型。

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 100.0%