2021年2月8日更新:
加入letterbox_image的选项,关闭letterbox_image后网络的map一般可以得到提升。
训练数据集 | 权值文件名称 | 测试数据集 | 输入图片大小 | mAP 0.5:0.95 | mAP 0.5 |
---|---|---|---|---|---|
COCO-Train2017 | yolo_weights.h5 | COCO-Val2017 | 416x416 | 38.1 | 66.8 |
tensorflow-gpu==1.13.1
keras==2.1.5
训练所需的yolo_weights.h5可以在Release里面下载。
https://github.com/bubbliiiing/yolo3-keras/releases
也可以去百度网盘下载
链接: https://pan.baidu.com/s/1izPebZ6PVU25q1we1UgSGQ 提取码: tbj3
- 下载完库后解压,在百度网盘下载yolo_weights.h5,放入model_data,运行predict.py,输入
img/street.jpg
- 利用video.py可进行摄像头检测。
- 按照训练步骤训练。
- 在yolo.py文件里面,在如下部分修改model_path和classes_path使其对应训练好的文件;model_path对应logs文件夹下面的权值文件,classes_path是model_path对应分的类。
_defaults = {
"model_path": 'model_data/yolo_weights.h5',
"anchors_path": 'model_data/yolo_anchors.txt',
"classes_path": 'model_data/coco_classes.txt,
"score" : 0.5,
"iou" : 0.3,
# 显存比较小可以使用416x416
# 显存比较大可以使用608x608
"model_image_size" : (416, 416)
}
- 运行predict.py,输入
img/street.jpg
- 利用video.py可进行摄像头检测。
- 本文使用VOC格式进行训练。
- 训练前将标签文件放在VOCdevkit文件夹下的VOC2007文件夹下的Annotation中。
- 训练前将图片文件放在VOCdevkit文件夹下的VOC2007文件夹下的JPEGImages中。
- 在训练前利用voc2yolo3.py文件生成对应的txt。
- 再运行根目录下的voc_annotation.py,运行前需要将classes改成你自己的classes。注意不要使用中文标签,文件夹中不要有空格!
classes = ["aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"]
- 此时会生成对应的2007_train.txt,每一行对应其图片位置及其真实框的位置。
- 在训练前需要务必在model_data下新建一个txt文档,文档中输入需要分的类,在train.py中将classes_path指向该文件,示例如下:
classes_path = 'model_data/new_classes.txt'
model_data/new_classes.txt文件内容为:
cat
dog
...
- 运行train.py即可开始训练。
更新了get_gt_txt.py、get_dr_txt.py和get_map.py文件。
get_map文件克隆自https://github.com/Cartucho/mAP
具体mAP计算过程可参考:https://www.bilibili.com/video/BV1zE411u7Vw
https://github.com/qqwweee/keras-yolo3/
https://github.com/Cartucho/mAP