forked from bubbliiiing/yolo3-keras
-
Notifications
You must be signed in to change notification settings - Fork 0
/
get_dr_txt.py
128 lines (107 loc) · 5.29 KB
/
get_dr_txt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
#----------------------------------------------------#
# 获取测试集的detection-result和images-optional
# 具体视频教程可查看
# https://www.bilibili.com/video/BV1zE411u7Vw
#----------------------------------------------------#
import colorsys
import os
import numpy as np
from keras import backend as K
from keras.applications.imagenet_utils import preprocess_input
from keras.layers import Input
from PIL import Image
from tqdm import tqdm
from nets.yolo3 import yolo_body, yolo_eval
from utils.utils import letterbox_image
from yolo import YOLO
class mAP_YOLO(YOLO):
#---------------------------------------------------#
# 获得所有的分类
#---------------------------------------------------#
def generate(self):
self.score = 0.01
self.iou = 0.5
model_path = os.path.expanduser(self.model_path)
assert model_path.endswith('.h5'), 'Keras model or weights must be a .h5 file.'
# 计算anchor数量
num_anchors = len(self.anchors)
num_classes = len(self.class_names)
# 载入模型,如果原来的模型里已经包括了模型结构则直接载入。
# 否则先构建模型再载入
try:
self.yolo_model = load_model(model_path, compile=False)
except:
self.yolo_model = yolo_body(Input(shape=(None,None,3)), num_anchors//3, num_classes)
self.yolo_model.load_weights(self.model_path)
else:
assert self.yolo_model.layers[-1].output_shape[-1] == \
num_anchors/len(self.yolo_model.output) * (num_classes + 5), \
'Mismatch between model and given anchor and class sizes'
print('{} model, anchors, and classes loaded.'.format(model_path))
# 画框设置不同的颜色
hsv_tuples = [(x / len(self.class_names), 1., 1.)
for x in range(len(self.class_names))]
self.colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples))
self.colors = list(
map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)),
self.colors))
# 打乱颜色
np.random.seed(10101)
np.random.shuffle(self.colors)
np.random.seed(None)
self.input_image_shape = K.placeholder(shape=(2, ))
#---------------------------------------------------------#
# 在yolo_eval函数中,我们会对预测结果进行后处理
# 后处理的内容包括,解码、非极大抑制、门限筛选等
#---------------------------------------------------------#
boxes, scores, classes = yolo_eval(self.yolo_model.output, self.anchors,
num_classes, self.input_image_shape, max_boxes = self.max_boxes,
score_threshold = self.score, iou_threshold = self.iou, letterbox_image = self.letterbox_image)
return boxes, scores, classes
#---------------------------------------------------#
# 检测图片
#---------------------------------------------------#
def detect_image(self, image_id, image):
f = open("./input/detection-results/"+image_id+".txt","w")
#---------------------------------------------------------#
# 给图像增加灰条,实现不失真的resize
# 也可以直接resize进行识别
#---------------------------------------------------------#
if self.letterbox_image:
boxed_image = letterbox_image(image, (self.model_image_size[1],self.model_image_size[0]))
else:
boxed_image = image.convert('RGB')
boxed_image = boxed_image.resize((self.model_image_size[1],self.model_image_size[0]), Image.BICUBIC)
image_data = np.array(boxed_image, dtype='float32')
image_data /= 255.
image_data = np.expand_dims(image_data, 0) # Add batch dimension.
# 预测结果
out_boxes, out_scores, out_classes = self.sess.run(
[self.boxes, self.scores, self.classes],
feed_dict={
self.yolo_model.input: image_data,
self.input_image_shape: [image.size[1], image.size[0]],
K.learning_phase(): 0
})
for i, c in enumerate(out_classes):
predicted_class = self.class_names[int(c)]
score = str(out_scores[i])
top, left, bottom, right = out_boxes[i]
f.write("%s %s %s %s %s %s\n" % (predicted_class, score[:6], str(int(left)), str(int(top)), str(int(right)),str(int(bottom))))
f.close()
return
yolo = mAP_YOLO()
image_ids = open('VOCdevkit/VOC2007/ImageSets/Main/test.txt').read().strip().split()
if not os.path.exists("./input"):
os.makedirs("./input")
if not os.path.exists("./input/detection-results"):
os.makedirs("./input/detection-results")
if not os.path.exists("./input/images-optional"):
os.makedirs("./input/images-optional")
for image_id in tqdm(image_ids):
image_path = "./VOCdevkit/VOC2007/JPEGImages/"+image_id+".jpg"
image = Image.open(image_path)
# 开启后在之后计算mAP可以可视化
# image.save("./input/images-optional/"+image_id+".jpg")
yolo.detect_image(image_id,image)
print("Conversion completed!")