Skip to content
This repository has been archived by the owner on Jul 16, 2024. It is now read-only.

Test Data (1112_20)

magnific0 edited this page Feb 25, 2014 · 1 revision
Trials: 200 - Population size: 20 - Generations: 500
Testing problem: Schwefel, Dimension: 10
With Population Size: 20
    Algorithm name: Particle Swarm optimization - gen:500 omega:0.7298 eta1:2.05 eta2:2.05 variant:5 topology:2 topology param.:4 
    Best:  4.30645823144e-05
    Mean:  651.394879358
    Std:   251.229338288
    Algorithm name: Differential Evolution - gen:500 F: 0.8 CR: 0.9 variant:2 ftol:1e-30 xtol:1e-30
    Best:  1.07483892862e-05
    Mean:  0.00388187915198
    Std:   0.00959401802026
    Algorithm name: DE - Self adaptive - gen:500 variant:2 self_adaptation:1 restart:1 ftol:1e-30 xtol:1e-30
    Best:  0.0
    Mean:  5.92191673072
    Std:   25.8130365813
    Algorithm name: DE - 1220 - gen:500 self_adaptation:1 variants:[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] restart:1 ftol:1e-30 xtol:1e-30
    Best:  6.36646291241e-12
    Mean:  1.18439022804
    Std:   11.78446481
    Algorithm name: Simulated Annealing (Corana's) - iter:10000 Ts:1 Tf:0.01 steps:1 bin_size:20 range:1 
    Best:  0.0400135789769
    Mean:  286.194604306
    Std:   157.851760567
    Algorithm name: Improved Harmony Search - iter:10000 phmcr:0.85 ppar_min:0.35 ppar_max:0.99 bw_min:1e-05 bw_max:1 
    Best:  2.90116286124e-05
    Mean:  7.4742982838e-05
    Std:   2.49823302685e-05
    Algorithm name: A Simple Genetic Algorithm - gen:500 CR:0.95 M:0.02 elitism:1 mutation:GAUSSIAN (0.1) selection:ROULETTE crossover:EXPONENTIAL 
    Best:  1.07148979237
    Mean:  513.51354284
    Std:   175.429130076
    Algorithm name: CMAES - gen:500 cc:-1 cs:-1 c1:-1 cmu:-1 sigma0:0.5 ftol:1e-30 xtol:1e-30 restart:1 homebrew variant?:0
    Best:  1263.34768108
    Mean:  1977.95947972
    Std:   248.606803221
    Algorithm name: Artificial Bee Colony optimization - gen:250 limit:20 
    Best:  127.509800201
    Mean:  393.355049378
    Std:   123.3755637
Testing problem: Rastrigin, Dimension: 10
With Population Size: 20
    Algorithm name: Particle Swarm optimization - gen:500 omega:0.7298 eta1:2.05 eta2:2.05 variant:5 topology:2 topology param.:4 
    Best:  0.0078899633714
    Mean:  6.76042270023
    Std:   3.29429896928
    Algorithm name: Differential Evolution - gen:500 F: 0.8 CR: 0.9 variant:2 ftol:1e-30 xtol:1e-30
    Best:  0.0145417868053
    Mean:  5.64314807019
    Std:   2.17984291709
    Algorithm name: DE - Self adaptive - gen:500 variant:2 self_adaptation:1 restart:1 ftol:1e-30 xtol:1e-30
    Best:  0.0
    Mean:  0.0298487717129
    Std:   0.16972730065
    Algorithm name: DE - 1220 - gen:500 self_adaptation:1 variants:[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] restart:1 ftol:1e-30 xtol:1e-30
    Best:  0.0
    Mean:  1.36424205266e-14
    Std:   1.77759786616e-13
    Algorithm name: Simulated Annealing (Corana's) - iter:10000 Ts:1 Tf:0.01 steps:1 bin_size:20 range:1 
    Best:  1.03208597797
    Mean:  4.4625225346
    Std:   2.11145776955
    Algorithm name: Improved Harmony Search - iter:10000 phmcr:0.85 ppar_min:0.35 ppar_max:0.99 bw_min:1e-05 bw_max:1 
    Best:  5.69444588905e-06
    Mean:  0.364106089145
    Std:   0.455546304099
    Algorithm name: A Simple Genetic Algorithm - gen:500 CR:0.95 M:0.02 elitism:1 mutation:GAUSSIAN (0.1) selection:ROULETTE crossover:EXPONENTIAL 
    Best:  0.120172678467
    Mean:  0.81006131302
    Std:   0.535162662656
    Algorithm name: CMAES - gen:500 cc:-1 cs:-1 c1:-1 cmu:-1 sigma0:0.5 ftol:1e-30 xtol:1e-30 restart:1 homebrew variant?:0
    Best:  1.98991811419
    Mean:  7.32786947448
    Std:   3.51795591016
    Algorithm name: Artificial Bee Colony optimization - gen:250 limit:20 
    Best:  0.194794065931
    Mean:  3.20115543481
    Std:   1.39035428209
Testing problem: Rosenbrock, Dimension: 10
With Population Size: 20
    Algorithm name: Particle Swarm optimization - gen:500 omega:0.7298 eta1:2.05 eta2:2.05 variant:5 topology:2 topology param.:4 
    Best:  0.00467872588281
    Mean:  6.17636580497
    Std:   10.9740429782
    Algorithm name: Differential Evolution - gen:500 F: 0.8 CR: 0.9 variant:2 ftol:1e-30 xtol:1e-30
    Best:  0.312004624536
    Mean:  1.71617759443
    Std:   0.799315640188
    Algorithm name: DE - Self adaptive - gen:500 variant:2 self_adaptation:1 restart:1 ftol:1e-30 xtol:1e-30
    Best:  0.000165006153006
    Mean:  2.88528749096
    Std:   2.09842797134
    Algorithm name: DE - 1220 - gen:500 self_adaptation:1 variants:[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] restart:1 ftol:1e-30 xtol:1e-30
    Best:  3.65140159048
    Mean:  5.77102794012
    Std:   0.416334188895
    Algorithm name: Simulated Annealing (Corana's) - iter:10000 Ts:1 Tf:0.01 steps:1 bin_size:20 range:1 
    Best:  0.0174085023484
    Mean:  4.16789390894
    Std:   12.6016301806
    Algorithm name: Improved Harmony Search - iter:10000 phmcr:0.85 ppar_min:0.35 ppar_max:0.99 bw_min:1e-05 bw_max:1 
    Best:  0.193199135949
    Mean:  17.4203183761
    Std:   21.8961344362
    Algorithm name: A Simple Genetic Algorithm - gen:500 CR:0.95 M:0.02 elitism:1 mutation:GAUSSIAN (0.1) selection:ROULETTE crossover:EXPONENTIAL 
    Best:  1.05871941343
    Mean:  77.8713252522
    Std:   151.523113481
    Algorithm name: CMAES - gen:500 cc:-1 cs:-1 c1:-1 cmu:-1 sigma0:0.5 ftol:1e-30 xtol:1e-30 restart:1 homebrew variant?:0
    Best:  6.822414235e-29
    Mean:  0.0598007849464
    Std:   0.484578230832
    Algorithm name: Artificial Bee Colony optimization - gen:250 limit:20 
    Best:  0.462179493801
    Mean:  6.89147436206
    Std:   4.96891467548
Testing problem: Ackley, Dimension: 10
With Population Size: 20
    Algorithm name: Particle Swarm optimization - gen:500 omega:0.7298 eta1:2.05 eta2:2.05 variant:5 topology:2 topology param.:4 
    Best:  4.40516392253e-08
    Mean:  0.0057761537288
    Std:   0.0814768455758
    Algorithm name: Differential Evolution - gen:500 F: 0.8 CR: 0.9 variant:2 ftol:1e-30 xtol:1e-30
    Best:  5.6524616618e-05
    Mean:  0.000221436965868
    Std:   0.000130619212531
    Algorithm name: DE - Self adaptive - gen:500 variant:2 self_adaptation:1 restart:1 ftol:1e-30 xtol:1e-30
    Best:  1.58444368736e-10
    Mean:  1.20559873196e-09
    Std:   9.61389806144e-10
    Algorithm name: DE - 1220 - gen:500 self_adaptation:1 variants:[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] restart:1 ftol:1e-30 xtol:1e-30
    Best:  4.4408920985e-16
    Mean:  1.51326062792e-12
    Std:   4.02826987083e-12
    Algorithm name: Simulated Annealing (Corana's) - iter:10000 Ts:1 Tf:0.01 steps:1 bin_size:20 range:1 
    Best:  0.0299271302485
    Mean:  0.0958560552527
    Std:   0.0299021550571
    Algorithm name: Improved Harmony Search - iter:10000 phmcr:0.85 ppar_min:0.35 ppar_max:0.99 bw_min:1e-05 bw_max:1 
    Best:  0.000785618315945
    Mean:  0.00139018280702
    Std:   0.000250356435306
    Algorithm name: A Simple Genetic Algorithm - gen:500 CR:0.95 M:0.02 elitism:1 mutation:GAUSSIAN (0.1) selection:ROULETTE crossover:EXPONENTIAL 
    Best:  0.16723237379
    Mean:  0.547689423043
    Std:   0.186639650037
    Algorithm name: CMAES - gen:500 cc:-1 cs:-1 c1:-1 cmu:-1 sigma0:0.5 ftol:1e-30 xtol:1e-30 restart:1 homebrew variant?:0
    Best:  3.99680288865e-15
    Mean:  4.77839989799e-15
    Std:   1.47169850899e-15
    Algorithm name: Artificial Bee Colony optimization - gen:250 limit:20 
    Best:  0.000104171424802
    Mean:  0.114778109573
    Std:   0.235290613421
Testing problem: Griewank, Dimension: 10
With Population Size: 20
    Algorithm name: Particle Swarm optimization - gen:500 omega:0.7298 eta1:2.05 eta2:2.05 variant:5 topology:2 topology param.:4 
    Best:  5.32421478017e-07
    Mean:  0.0556710714828
    Std:   0.0301049234739
    Algorithm name: Differential Evolution - gen:500 F: 0.8 CR: 0.9 variant:2 ftol:1e-30 xtol:1e-30
    Best:  0.0196614001529
    Mean:  0.222144243274
    Std:   0.0669502220711
    Algorithm name: DE - Self adaptive - gen:500 variant:2 self_adaptation:1 restart:1 ftol:1e-30 xtol:1e-30
    Best:  3.96349619791e-14
    Mean:  0.00496187752766
    Std:   0.00599593287376
    Algorithm name: DE - 1220 - gen:500 self_adaptation:1 variants:[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] restart:1 ftol:1e-30 xtol:1e-30
    Best:  0.0
    Mean:  2.38135674265e-06
    Std:   2.05456189368e-05
    Algorithm name: Simulated Annealing (Corana's) - iter:10000 Ts:1 Tf:0.01 steps:1 bin_size:20 range:1 
    Best:  0.103177544776
    Mean:  0.322542596631
    Std:   0.122255753156
    Algorithm name: Improved Harmony Search - iter:10000 phmcr:0.85 ppar_min:0.35 ppar_max:0.99 bw_min:1e-05 bw_max:1 
    Best:  8.42245221307e-05
    Mean:  0.0250932313674
    Std:   0.0180802625311
    Algorithm name: A Simple Genetic Algorithm - gen:500 CR:0.95 M:0.02 elitism:1 mutation:GAUSSIAN (0.1) selection:ROULETTE crossover:EXPONENTIAL 
    Best:  0.193855763523
    Mean:  0.770338094621
    Std:   0.232949388527
    Algorithm name: CMAES - gen:500 cc:-1 cs:-1 c1:-1 cmu:-1 sigma0:0.5 ftol:1e-30 xtol:1e-30 restart:1 homebrew variant?:0
    Best:  0.0
    Mean:  0.00392946704771
    Std:   0.00580161862706
    Algorithm name: Artificial Bee Colony optimization - gen:250 limit:20 
    Best:  0.00217580093109
    Mean:  0.0934743479292
    Std:   0.05754536118
Testing problem: Levy5, Dimension: 10
With Population Size: 20
    Algorithm name: Particle Swarm optimization - gen:500 omega:0.7298 eta1:2.05 eta2:2.05 variant:5 topology:2 topology param.:4 
    Best:  -4358.28132462
    Mean:  -3564.81227177
    Std:   469.443751307
    Algorithm name: Differential Evolution - gen:500 F: 0.8 CR: 0.9 variant:2 ftol:1e-30 xtol:1e-30
    Best:  -3545.35242808
    Mean:  -2616.07564197
    Std:   333.158633124
    Algorithm name: DE - Self adaptive - gen:500 variant:2 self_adaptation:1 restart:1 ftol:1e-30 xtol:1e-30
    Best:  -4411.52297481
    Mean:  -4345.57240929
    Std:   71.0798314648
    Algorithm name: DE - 1220 - gen:500 self_adaptation:1 variants:[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] restart:1 ftol:1e-30 xtol:1e-30
    Best:  -4411.52153501
    Mean:  -4249.35905824
    Std:   141.888174431
    Algorithm name: Simulated Annealing (Corana's) - iter:10000 Ts:1 Tf:0.01 steps:1 bin_size:20 range:1 
    Best:  -4307.26345439
    Mean:  -3575.93562518
    Std:   419.380633814
    Algorithm name: Improved Harmony Search - iter:10000 phmcr:0.85 ppar_min:0.35 ppar_max:0.99 bw_min:1e-05 bw_max:1 
    Best:  -4411.4238652
    Mean:  -4118.79395277
    Std:   303.619970435
    Algorithm name: A Simple Genetic Algorithm - gen:500 CR:0.95 M:0.02 elitism:1 mutation:GAUSSIAN (0.1) selection:ROULETTE crossover:EXPONENTIAL 
    Best:  -4198.6636025
    Mean:  -3434.3223874
    Std:   398.211591029
    Algorithm name: CMAES - gen:500 cc:-1 cs:-1 c1:-1 cmu:-1 sigma0:0.5 ftol:1e-30 xtol:1e-30 restart:1 homebrew variant?:0
    Best:  -3783.7547904
    Mean:  -2322.79848319
    Std:   613.278134571
    Algorithm name: Artificial Bee Colony optimization - gen:250 limit:20 
    Best:  -3926.49059874
    Mean:  -2960.53364488
    Std:   374.944954747
Testing problem: Cassini 1, Dimension: 6
With Population Size: 20
    Algorithm name: Particle Swarm optimization - gen:500 omega:0.7298 eta1:2.05 eta2:2.05 variant:5 topology:2 topology param.:4 
    Best:  5.34902024962
    Mean:  12.0470260923
    Std:   3.72526256845
    Algorithm name: Differential Evolution - gen:500 F: 0.8 CR: 0.9 variant:2 ftol:1e-30 xtol:1e-30
    Best:  4.93175049115
    Mean:  9.19987270017
    Std:   3.43164676361
    Algorithm name: DE - Self adaptive - gen:500 variant:2 self_adaptation:1 restart:1 ftol:1e-30 xtol:1e-30
    Best:  4.94745867533
    Mean:  9.49392821951
    Std:   3.46098949355
    Algorithm name: DE - 1220 - gen:500 self_adaptation:1 variants:[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] restart:1 ftol:1e-30 xtol:1e-30
    Best:  5.53873610925
    Mean:  10.8808537423
    Std:   3.68863789746
    Algorithm name: Simulated Annealing (Corana's) - iter:10000 Ts:1 Tf:0.01 steps:1 bin_size:20 range:1 
    Best:  5.22879972636
    Mean:  21.8180939278
    Std:   14.376269847
    Algorithm name: Improved Harmony Search - iter:10000 phmcr:0.85 ppar_min:0.35 ppar_max:0.99 bw_min:1e-05 bw_max:1 
    Best:  5.0678077259
    Mean:  12.6277626644
    Std:   3.48563167213
    Algorithm name: A Simple Genetic Algorithm - gen:500 CR:0.95 M:0.02 elitism:1 mutation:GAUSSIAN (0.1) selection:ROULETTE crossover:EXPONENTIAL 
    Best:  7.30246647346
    Mean:  29.0549508714
    Std:   17.6659890011
    Algorithm name: CMAES - gen:500 cc:-1 cs:-1 c1:-1 cmu:-1 sigma0:0.5 ftol:1e-30 xtol:1e-30 restart:1 homebrew variant?:0
    Best:  10.9964850603
    Mean:  15.8824718863
    Std:   2.04571161966
    Algorithm name: Artificial Bee Colony optimization - gen:250 limit:20 
    Best:  6.23750922563
    Mean:  12.9044103642
    Std:   3.15029492662
Testing problem: GTOC_1, Dimension: 8
With Population Size: 20
    Algorithm name: Particle Swarm optimization - gen:500 omega:0.7298 eta1:2.05 eta2:2.05 variant:5 topology:2 topology param.:4 
    Best:  -1142482.41289
    Mean:  -429906.43868
    Std:   274005.693038
    Algorithm name: Differential Evolution - gen:500 F: 0.8 CR: 0.9 variant:2 ftol:1e-30 xtol:1e-30
    Best:  -840036.731242
    Mean:  -253702.737031
    Std:   141255.915601
    Algorithm name: DE - Self adaptive - gen:500 variant:2 self_adaptation:1 restart:1 ftol:1e-30 xtol:1e-30
    Best:  -966198.787989
    Mean:  -375224.600221
    Std:   171826.705833
    Algorithm name: DE - 1220 - gen:500 self_adaptation:1 variants:[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] restart:1 ftol:1e-30 xtol:1e-30
    Best:  -963918.637061
    Mean:  -439062.750173
    Std:   170618.334618
    Algorithm name: Simulated Annealing (Corana's) - iter:10000 Ts:1 Tf:0.01 steps:1 bin_size:20 range:1 
    Best:  -811660.798749
    Mean:  -84484.3514644
    Std:   156125.646228
    Algorithm name: Improved Harmony Search - iter:10000 phmcr:0.85 ppar_min:0.35 ppar_max:0.99 bw_min:1e-05 bw_max:1 
    Best:  -1373683.73279
    Mean:  -720228.011413
    Std:   208409.500393
    Algorithm name: A Simple Genetic Algorithm - gen:500 CR:0.95 M:0.02 elitism:1 mutation:GAUSSIAN (0.1) selection:ROULETTE crossover:EXPONENTIAL 
    Best:  -736924.897307
    Mean:  -67194.4474029
    Std:   127638.91447
    Algorithm name: CMAES - gen:500 cc:-1 cs:-1 c1:-1 cmu:-1 sigma0:0.5 ftol:1e-30 xtol:1e-30 restart:1 homebrew variant?:0
    Best:  -938419.052966
    Mean:  -86634.6938907
    Std:   131239.33798
    Algorithm name: Artificial Bee Colony optimization - gen:250 limit:20 
    Best:  -740791.705221
    Mean:  -177839.103037
    Std:   158451.50548
Testing problem: Cassini 2, Dimension: 22
With Population Size: 20
    Algorithm name: Particle Swarm optimization - gen:500 omega:0.7298 eta1:2.05 eta2:2.05 variant:5 topology:2 topology param.:4 
    Best:  13.7985878688
    Mean:  23.0227452165
    Std:   3.90216199707
    Algorithm name: Differential Evolution - gen:500 F: 0.8 CR: 0.9 variant:2 ftol:1e-30 xtol:1e-30
    Best:  22.894839677
    Mean:  29.4646371123
    Std:   2.43393315804
    Algorithm name: DE - Self adaptive - gen:500 variant:2 self_adaptation:1 restart:1 ftol:1e-30 xtol:1e-30
    Best:  17.5003903972
    Mean:  25.8587028553
    Std:   2.97435928101
    Algorithm name: DE - 1220 - gen:500 self_adaptation:1 variants:[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] restart:1 ftol:1e-30 xtol:1e-30
    Best:  14.0215919686
    Mean:  24.0335648591
    Std:   3.28928740432
    Algorithm name: Simulated Annealing (Corana's) - iter:10000 Ts:1 Tf:0.01 steps:1 bin_size:20 range:1 
    Best:  10.8721384102
    Mean:  27.0971000907
    Std:   7.81377431952
    Algorithm name: Improved Harmony Search - iter:10000 phmcr:0.85 ppar_min:0.35 ppar_max:0.99 bw_min:1e-05 bw_max:1 
    Best:  12.5495066295
    Mean:  21.1247159748
    Std:   4.10045482823
    Algorithm name: A Simple Genetic Algorithm - gen:500 CR:0.95 M:0.02 elitism:1 mutation:GAUSSIAN (0.1) selection:ROULETTE crossover:EXPONENTIAL 
    Best:  20.1467636184
    Mean:  32.4603483254
    Std:   6.42532184499
    Algorithm name: CMAES - gen:500 cc:-1 cs:-1 c1:-1 cmu:-1 sigma0:0.5 ftol:1e-30 xtol:1e-30 restart:1 homebrew variant?:0
    Best:  16.7364303453
    Mean:  23.6886964582
    Std:   3.2220250149
    Algorithm name: Artificial Bee Colony optimization - gen:250 limit:20 
    Best:  16.3754846987
    Mean:  29.21204124
    Std:   4.32331245129
Testing problem: Messenger full, Dimension: 26
With Population Size: 20
    Algorithm name: Particle Swarm optimization - gen:500 omega:0.7298 eta1:2.05 eta2:2.05 variant:5 topology:2 topology param.:4 
    Best:  11.4175928823
    Mean:  20.2300157148
    Std:   3.52828750895
    Algorithm name: Differential Evolution - gen:500 F: 0.8 CR: 0.9 variant:2 ftol:1e-30 xtol:1e-30
    Best:  19.5129943483
    Mean:  30.126446111
    Std:   3.5797501741
    Algorithm name: DE - Self adaptive - gen:500 variant:2 self_adaptation:1 restart:1 ftol:1e-30 xtol:1e-30
    Best:  14.8621005753
    Mean:  26.3702179085
    Std:   3.56582599536
    Algorithm name: DE - 1220 - gen:500 self_adaptation:1 variants:[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] restart:1 ftol:1e-30 xtol:1e-30
    Best:  13.0658484438
    Mean:  24.4738401046
    Std:   3.89461755575
    Algorithm name: Simulated Annealing (Corana's) - iter:10000 Ts:1 Tf:0.01 steps:1 bin_size:20 range:1 
    Best:  8.47734739916
    Mean:  24.2822647292
    Std:   8.61439509615
    Algorithm name: Improved Harmony Search - iter:10000 phmcr:0.85 ppar_min:0.35 ppar_max:0.99 bw_min:1e-05 bw_max:1 
    Best:  12.2416552291
    Mean:  22.5525507985
    Std:   4.6270987426
    Algorithm name: A Simple Genetic Algorithm - gen:500 CR:0.95 M:0.02 elitism:1 mutation:GAUSSIAN (0.1) selection:ROULETTE crossover:EXPONENTIAL 
    Best:  12.8121933522
    Mean:  32.2455070871
    Std:   9.62971558435
    Algorithm name: CMAES - gen:500 cc:-1 cs:-1 c1:-1 cmu:-1 sigma0:0.5 ftol:1e-30 xtol:1e-30 restart:1 homebrew variant?:0
    Best:  14.2821501254
    Mean:  18.2570063976
    Std:   2.50739588242
    Algorithm name: Artificial Bee Colony optimization - gen:250 limit:20 
matplotlib  Best:       15.4751256634
    Mean:  32.2349080666
 Std:   5.68150377029
Clone this wiki locally