Skip to content
This repository has been archived by the owner on Jul 16, 2024. It is now read-only.

Test Data (1111_50)

magnific0 edited this page Feb 25, 2014 · 1 revision
Trials: 200 - Population size: 50 - Generations: 500
Testing problem: Schwefel, Dimension: 10
With Population Size: 50
    Algorithm name: Particle Swarm optimization - gen:500 omega:0.7298 eta1:2.05 eta2:2.05 variant:5 topology:2 topology param.:4 
    Best:  118.438334614
    Mean:  455.496318355
    Std:   192.110633283
    Algorithm name: Differential Evolution - gen:500 F: 0.8 CR: 0.9 variant:2 ftol:1e-30 xtol:1e-30
    Best:  0.000242926885221
    Mean:  0.00538739578439
    Std:   0.00919600260789
    Algorithm name: DE - Self adaptive - gen:500 variant:2 self_adaptation:1 restart:1 ftol:1e-30 xtol:1e-30
    Best:  0.0
    Mean:  4.13820089307e-13
    Std:   4.52901879437e-13
    Algorithm name: DE - 1220 - gen:500 self_adaptation:1 variants:[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] restart:1 ftol:1e-30 xtol:1e-30
    Best:  6.36646291241e-12
    Mean:  7.06604168954e-09
    Std:   2.42628864483e-08
    Algorithm name: Simulated Annealing (Corana's) - iter:25000 Ts:1 Tf:0.01 steps:1 bin_size:20 range:1 
    Best:  0.030176124963
    Mean:  263.979867076
    Std:   151.905446654
    Algorithm name: Improved Harmony Search - iter:25000 phmcr:0.85 ppar_min:0.35 ppar_max:0.99 bw_min:1e-05 bw_max:1 
    Best:  2.13009416257e-05
    Mean:  5.58535759455e-05
    Std:   1.8474876993e-05
    Algorithm name: A Simple Genetic Algorithm - gen:500 CR:0.95 M:0.02 elitism:1 mutation:GAUSSIAN (0.1) selection:ROULETTE crossover:EXPONENTIAL 
    Best:  3.64538224619
    Mean:  436.028532316
    Std:   177.010036241
    Algorithm name: CMAES - gen:500 cc:-1 cs:-1 c1:-1 cmu:-1 sigma0:0.5 ftol:1e-30 xtol:1e-30 restart:1
    Best:  592.22457455
    Mean:  1528.34594684
    Std:   384.410542144
    Algorithm name: Artificial Bee Colony optimization - gen:250 limit:20 
    Best:  0.0136808324778
    Mean:  115.800225027
    Std:   79.3783537956
Testing problem: Rastrigin, Dimension: 10
With Population Size: 50
    Algorithm name: Particle Swarm optimization - gen:500 omega:0.7298 eta1:2.05 eta2:2.05 variant:5 topology:2 topology param.:4 
    Best:  6.19460593043e-07
    Mean:  4.32037495892
    Std:   1.80658532164
    Algorithm name: Differential Evolution - gen:500 F: 0.8 CR: 0.9 variant:2 ftol:1e-30 xtol:1e-30
    Best:  1.72485586023
    Mean:  5.30793620534
    Std:   1.45288540287
    Algorithm name: DE - Self adaptive - gen:500 variant:2 self_adaptation:1 restart:1 ftol:1e-30 xtol:1e-30
    Best:  0.0
    Mean:  3.29691829393e-14
    Std:   5.2054420955e-14
    Algorithm name: DE - 1220 - gen:500 self_adaptation:1 variants:[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] restart:1 ftol:1e-30 xtol:1e-30
    Best:  0.0
    Mean:  0.0
    Std:   0.0
    Algorithm name: Simulated Annealing (Corana's) - iter:25000 Ts:1 Tf:0.01 steps:1 bin_size:20 range:1 
    Best:  1.00618874368
    Mean:  5.3521559072
    Std:   2.42120105593
    Algorithm name: Improved Harmony Search - iter:25000 phmcr:0.85 ppar_min:0.35 ppar_max:0.99 bw_min:1e-05 bw_max:1 
    Best:  3.52724025277e-06
    Mean:  0.000170653384358
    Std:   0.0016282186511
    Algorithm name: A Simple Genetic Algorithm - gen:500 CR:0.95 M:0.02 elitism:1 mutation:GAUSSIAN (0.1) selection:ROULETTE crossover:EXPONENTIAL 
    Best:  0.0954000135637
    Mean:  0.457604929672
    Std:   0.291375746985
    Algorithm name: CMAES - gen:500 cc:-1 cs:-1 c1:-1 cmu:-1 sigma0:0.5 ftol:1e-30 xtol:1e-30 restart:1
    Best:  1.98991811419
    Mean:  13.1831848494
    Std:   10.0504092982
    Algorithm name: Artificial Bee Colony optimization - gen:250 limit:20 
    Best:  0.00017935969629
    Mean:  0.184824272666
    Std:   0.318767994286
Testing problem: Rosenbrock, Dimension: 10
With Population Size: 50
    Algorithm name: Particle Swarm optimization - gen:500 omega:0.7298 eta1:2.05 eta2:2.05 variant:5 topology:2 topology param.:4 
    Best:  0.000337117219914
    Mean:  3.60086645068
    Std:   1.69448398871
    Algorithm name: Differential Evolution - gen:500 F: 0.8 CR: 0.9 variant:2 ftol:1e-30 xtol:1e-30
    Best:  0.225493318228
    Mean:  1.17261214808
    Std:   0.497558853284
    Algorithm name: DE - Self adaptive - gen:500 variant:2 self_adaptation:1 restart:1 ftol:1e-30 xtol:1e-30
    Best:  5.9143858449e-05
    Mean:  2.37194588595
    Std:   1.54160220713
    Algorithm name: DE - 1220 - gen:500 self_adaptation:1 variants:[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] restart:1 ftol:1e-30 xtol:1e-30
    Best:  4.46014585872
    Mean:  5.18218947351
    Std:   0.298549390665
    Algorithm name: Simulated Annealing (Corana's) - iter:25000 Ts:1 Tf:0.01 steps:1 bin_size:20 range:1 
    Best:  0.0190307327619
    Mean:  2.17824559498
    Std:   7.53152064792
    Algorithm name: Improved Harmony Search - iter:25000 phmcr:0.85 ppar_min:0.35 ppar_max:0.99 bw_min:1e-05 bw_max:1 
    Best:  5.45744865317
    Mean:  10.5867118795
    Std:   12.639175155
    Algorithm name: A Simple Genetic Algorithm - gen:500 CR:0.95 M:0.02 elitism:1 mutation:GAUSSIAN (0.1) selection:ROULETTE crossover:EXPONENTIAL 
    Best:  2.01042940753
    Mean:  37.8848883142
    Std:   67.8013268314
    Algorithm name: CMAES - gen:500 cc:-1 cs:-1 c1:-1 cmu:-1 sigma0:0.5 ftol:1e-30 xtol:1e-30 restart:1
    Best:  0.0
    Mean:  0.0797315822469
    Std:   0.558121075729
    Algorithm name: Artificial Bee Colony optimization - gen:250 limit:20 
    Best:  0.123202895205
    Mean:  1.36003762292
    Std:   0.721448323844
Testing problem: Ackley, Dimension: 10
With Population Size: 50
    Algorithm name: Particle Swarm optimization - gen:500 omega:0.7298 eta1:2.05 eta2:2.05 variant:5 topology:2 topology param.:4 
    Best:  2.09503991933e-08
    Mean:  1.92741810956e-07
    Std:   1.35818764363e-07
    Algorithm name: Differential Evolution - gen:500 F: 0.8 CR: 0.9 variant:2 ftol:1e-30 xtol:1e-30
    Best:  0.00016188270346
    Mean:  0.000397528223809
    Std:   0.000123870934272
    Algorithm name: DE - Self adaptive - gen:500 variant:2 self_adaptation:1 restart:1 ftol:1e-30 xtol:1e-30
    Best:  1.93058458109e-10
    Mean:  9.17691114211e-10
    Std:   4.9280253851e-10
    Algorithm name: DE - 1220 - gen:500 self_adaptation:1 variants:[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] restart:1 ftol:1e-30 xtol:1e-30
    Best:  4.4408920985e-16
    Mean:  1.39657174714e-13
    Std:   7.21001781624e-13
    Algorithm name: Simulated Annealing (Corana's) - iter:25000 Ts:1 Tf:0.01 steps:1 bin_size:20 range:1 
    Best:  0.0197723301744
    Mean:  0.0854553740541
    Std:   0.0284610841302
    Algorithm name: Improved Harmony Search - iter:25000 phmcr:0.85 ppar_min:0.35 ppar_max:0.99 bw_min:1e-05 bw_max:1 
    Best:  0.000630907974767
    Mean:  0.00119050374069
    Std:   0.000181133613314
    Algorithm name: A Simple Genetic Algorithm - gen:500 CR:0.95 M:0.02 elitism:1 mutation:GAUSSIAN (0.1) selection:ROULETTE crossover:EXPONENTIAL 
    Best:  0.0733676932552
    Mean:  0.369832193809
    Std:   0.152089227014
    Algorithm name: CMAES - gen:500 cc:-1 cs:-1 c1:-1 cmu:-1 sigma0:0.5 ftol:1e-30 xtol:1e-30 restart:1
    Best:  3.99680288865e-15
    Mean:  6.37706568556
    Std:   8.06976558409
    Algorithm name: Artificial Bee Colony optimization - gen:250 limit:20 
    Best:  0.000111331320899
    Mean:  0.00187323923764
    Std:   0.00166703960006
Testing problem: Griewank, Dimension: 10
With Population Size: 50
    Algorithm name: Particle Swarm optimization - gen:500 omega:0.7298 eta1:2.05 eta2:2.05 variant:5 topology:2 topology param.:4 
    Best:  7.82152120848e-13
    Mean:  0.0314420829534
    Std:   0.0168662932499
    Algorithm name: Differential Evolution - gen:500 F: 0.8 CR: 0.9 variant:2 ftol:1e-30 xtol:1e-30
    Best:  0.0947072376727
    Mean:  0.221419367671
    Std:   0.0488948010115
    Algorithm name: DE - Self adaptive - gen:500 variant:2 self_adaptation:1 restart:1 ftol:1e-30 xtol:1e-30
    Best:  5.49414846951e-10
    Mean:  0.000890321227839
    Std:   0.00197673620743
    Algorithm name: DE - 1220 - gen:500 self_adaptation:1 variants:[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] restart:1 ftol:1e-30 xtol:1e-30
    Best:  0.0
    Mean:  5.92318416537e-13
    Std:   4.17317981015e-12
    Algorithm name: Simulated Annealing (Corana's) - iter:25000 Ts:1 Tf:0.01 steps:1 bin_size:20 range:1 
    Best:  0.10618232233
    Mean:  0.328816209292
    Std:   0.12625851326
    Algorithm name: Improved Harmony Search - iter:25000 phmcr:0.85 ppar_min:0.35 ppar_max:0.99 bw_min:1e-05 bw_max:1 
    Best:  4.10977910502e-05
    Mean:  0.00843060815094
    Std:   0.00769458792411
    Algorithm name: A Simple Genetic Algorithm - gen:500 CR:0.95 M:0.02 elitism:1 mutation:GAUSSIAN (0.1) selection:ROULETTE crossover:EXPONENTIAL 
    Best:  0.236610948519
    Mean:  0.739486828045
    Std:   0.235266786396
    Algorithm name: CMAES - gen:500 cc:-1 cs:-1 c1:-1 cmu:-1 sigma0:0.5 ftol:1e-30 xtol:1e-30 restart:1
    Best:  0.0
    Mean:  0.0151791885057
    Std:   0.0151566564222
    Algorithm name: Artificial Bee Colony optimization - gen:250 limit:20 
    Best:  2.89261438446e-05
    Mean:  0.0150109548529
    Std:   0.0112010091507
Testing problem: Levy5, Dimension: 10
With Population Size: 50
    Algorithm name: Particle Swarm optimization - gen:500 omega:0.7298 eta1:2.05 eta2:2.05 variant:5 topology:2 topology param.:4 
    Best:  -4363.86143571
    Mean:  -3798.2075356
    Std:   376.832011082
    Algorithm name: Differential Evolution - gen:500 F: 0.8 CR: 0.9 variant:2 ftol:1e-30 xtol:1e-30
    Best:  -3528.5344002
    Mean:  -2729.40943366
    Std:   270.062205847
    Algorithm name: DE - Self adaptive - gen:500 variant:2 self_adaptation:1 restart:1 ftol:1e-30 xtol:1e-30
    Best:  -4411.48553023
    Mean:  -4373.95017915
    Std:   34.8560353779
    Algorithm name: DE - 1220 - gen:500 self_adaptation:1 variants:[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] restart:1 ftol:1e-30 xtol:1e-30
    Best:  -4411.52232291
    Mean:  -4363.87248507
    Std:   56.3460764887
    Algorithm name: Simulated Annealing (Corana's) - iter:25000 Ts:1 Tf:0.01 steps:1 bin_size:20 range:1 
    Best:  -4341.87127633
    Mean:  -3531.58104493
    Std:   420.580258745
    Algorithm name: Improved Harmony Search - iter:25000 phmcr:0.85 ppar_min:0.35 ppar_max:0.99 bw_min:1e-05 bw_max:1 
    Best:  -4411.45024042
    Mean:  -4335.99132214
    Std:   137.332219846
    Algorithm name: A Simple Genetic Algorithm - gen:500 CR:0.95 M:0.02 elitism:1 mutation:GAUSSIAN (0.1) selection:ROULETTE crossover:EXPONENTIAL 
    Best:  -4233.63671073
    Mean:  -3653.33187315
    Std:   377.746871006
    Algorithm name: CMAES - gen:500 cc:-1 cs:-1 c1:-1 cmu:-1 sigma0:0.5 ftol:1e-30 xtol:1e-30 restart:1
    Best:  -4291.61681505
    Mean:  -21.5805934967
    Std:   4685.70169683
    Algorithm name: Artificial Bee Colony optimization - gen:250 limit:20 
    Best:  -4291.21869424
    Mean:  -3940.28675411
    Std:   185.677111078
Testing problem: Cassini 1, Dimension: 6
With Population Size: 50
    Algorithm name: Particle Swarm optimization - gen:500 omega:0.7298 eta1:2.05 eta2:2.05 variant:5 topology:2 topology param.:4 
    Best:  5.00272083736
    Mean:  10.4037241239
    Std:   2.97936900463
    Algorithm name: Differential Evolution - gen:500 F: 0.8 CR: 0.9 variant:2 ftol:1e-30 xtol:1e-30
    Best:  5.30346126676
    Mean:  6.43008224605
    Std:   2.29263524947
    Algorithm name: DE - Self adaptive - gen:500 variant:2 self_adaptation:1 restart:1 ftol:1e-30 xtol:1e-30
    Best:  5.3036003117
    Mean:  6.79580852804
    Std:   2.19295923515
    Algorithm name: DE - 1220 - gen:500 self_adaptation:1 variants:[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] restart:1 ftol:1e-30 xtol:1e-30
    Best:  5.50795046523
    Mean:  7.71123966011
    Std:   2.05675618708
    Algorithm name: Simulated Annealing (Corana's) - iter:25000 Ts:1 Tf:0.01 steps:1 bin_size:20 range:1 
    Best:  5.36671534157
    Mean:  17.5798284356
    Std:   10.3221443445
    Algorithm name: Improved Harmony Search - iter:25000 phmcr:0.85 ppar_min:0.35 ppar_max:0.99 bw_min:1e-05 bw_max:1 
    Best:  5.33885977842
    Mean:  11.6709938806
    Std:   3.60596068686
    Algorithm name: A Simple Genetic Algorithm - gen:500 CR:0.95 M:0.02 elitism:1 mutation:GAUSSIAN (0.1) selection:ROULETTE crossover:EXPONENTIAL 
    Best:  5.60821087927
    Mean:  17.9163604298
    Std:   7.00176084998
    Algorithm name: CMAES - gen:500 cc:-1 cs:-1 c1:-1 cmu:-1 sigma0:0.5 ftol:1e-30 xtol:1e-30 restart:1
    Best:  5.30342237191
    Mean:  20.5692047842
    Std:   15.7343336524
    Algorithm name: Artificial Bee Colony optimization - gen:250 limit:20 
    Best:  5.77747750534
    Mean:  10.9351807538
    Std:   2.25146315094
Testing problem: GTOC_1, Dimension: 8
With Population Size: 50
    Algorithm name: Particle Swarm optimization - gen:500 omega:0.7298 eta1:2.05 eta2:2.05 variant:5 topology:2 topology param.:4 
    Best:  -1245129.09159
    Mean:  -634535.449315
    Std:   219284.905012
    Algorithm name: Differential Evolution - gen:500 F: 0.8 CR: 0.9 variant:2 ftol:1e-30 xtol:1e-30
    Best:  -746840.181024
    Mean:  -341566.427298
    Std:   132575.207866
    Algorithm name: DE - Self adaptive - gen:500 variant:2 self_adaptation:1 restart:1 ftol:1e-30 xtol:1e-30
    Best:  -957385.832824
    Mean:  -513362.295871
    Std:   144289.140219
    Algorithm name: DE - 1220 - gen:500 self_adaptation:1 variants:[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] restart:1 ftol:1e-30 xtol:1e-30
    Best:  -955930.592771
    Mean:  -552219.386721
    Std:   140359.344288
    Algorithm name: Simulated Annealing (Corana's) - iter:25000 Ts:1 Tf:0.01 steps:1 bin_size:20 range:1 
    Best:  -914299.02714
    Mean:  -117308.255185
    Std:   198496.860094
    Algorithm name: Improved Harmony Search - iter:25000 phmcr:0.85 ppar_min:0.35 ppar_max:0.99 bw_min:1e-05 bw_max:1 
    Best:  -1218485.26147
    Mean:  -825286.610248
    Std:   158358.107181
    Algorithm name: A Simple Genetic Algorithm - gen:500 CR:0.95 M:0.02 elitism:1 mutation:GAUSSIAN (0.1) selection:ROULETTE crossover:EXPONENTIAL 
    Best:  -757406.00736
    Mean:  -135677.293183
    Std:   181813.445906
    Algorithm name: CMAES - gen:500 cc:-1 cs:-1 c1:-1 cmu:-1 sigma0:0.5 ftol:1e-30 xtol:1e-30 restart:1
    Best:  -1241618.61143
    Mean:  -168959.495057
    Std:   262095.732893
    Algorithm name: Artificial Bee Colony optimization - gen:250 limit:20 
    Best:  -883225.489476
    Mean:  -371888.42208
    Std:   186306.134401
Testing problem: Cassini 2, Dimension: 22
With Population Size: 50
    Algorithm name: Particle Swarm optimization - gen:500 omega:0.7298 eta1:2.05 eta2:2.05 variant:5 topology:2 topology param.:4 
    Best:  12.3059123724
    Mean:  20.3776188557
    Std:   2.92037095234
    Algorithm name: Differential Evolution - gen:500 F: 0.8 CR: 0.9 variant:2 ftol:1e-30 xtol:1e-30
    Best:  21.06757745
    Mean:  27.6546417183
    Std:   2.22291180918
    Algorithm name: DE - Self adaptive - gen:500 variant:2 self_adaptation:1 restart:1 ftol:1e-30 xtol:1e-30
    Best:  17.1153837891
    Mean:  23.4857363949
    Std:   2.54670028042
    Algorithm name: DE - 1220 - gen:500 self_adaptation:1 variants:[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] restart:1 ftol:1e-30 xtol:1e-30
    Best:  12.6743383908
    Mean:  21.9032919418
    Std:   3.16202705815
    Algorithm name: Simulated Annealing (Corana's) - iter:25000 Ts:1 Tf:0.01 steps:1 bin_size:20 range:1 
    Best:  10.5340776426
    Mean:  23.6029625934
    Std:   5.74337858643
    Algorithm name: Improved Harmony Search - iter:25000 phmcr:0.85 ppar_min:0.35 ppar_max:0.99 bw_min:1e-05 bw_max:1 
    Best:  12.2697523988
    Mean:  19.3063218005
    Std:   3.99020046545
    Algorithm name: A Simple Genetic Algorithm - gen:500 CR:0.95 M:0.02 elitism:1 mutation:GAUSSIAN (0.1) selection:ROULETTE crossover:EXPONENTIAL 
    Best:  15.6607301492
    Mean:  27.713921582
    Std:   4.95659090126
    Algorithm name: CMAES - gen:500 cc:-1 cs:-1 c1:-1 cmu:-1 sigma0:0.5 ftol:1e-30 xtol:1e-30 restart:1
    Best:  14.4224569806
    Mean:  27.9902114264
    Std:   7.56586710613
    Algorithm name: Artificial Bee Colony optimization - gen:250 limit:20 
    Best:  13.8390113469
    Mean:  25.7586778878
    Std:   3.24868317112
Testing problem: Messenger full, Dimension: 26
With Population Size: 50
    Algorithm name: Particle Swarm optimization - gen:500 omega:0.7298 eta1:2.05 eta2:2.05 variant:5 topology:2 topology param.:4 
    Best:  10.7985211087
    Mean:  17.8870880042
    Std:   2.546731442
    Algorithm name: Differential Evolution - gen:500 F: 0.8 CR: 0.9 variant:2 ftol:1e-30 xtol:1e-30
    Best:  17.0476938298
    Mean:  28.1578496907
    Std:   3.34050164096
    Algorithm name: DE - Self adaptive - gen:500 variant:2 self_adaptation:1 restart:1 ftol:1e-30 xtol:1e-30
    Best:  17.6210790338
    Mean:  24.0196678539
    Std:   2.81594320317
    Algorithm name: DE - 1220 - gen:500 self_adaptation:1 variants:[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] restart:1 ftol:1e-30 xtol:1e-30
    Best:  13.797169166
    Mean:  22.0407378205
    Std:   3.06714848715
    Algorithm name: Simulated Annealing (Corana's) - iter:25000 Ts:1 Tf:0.01 steps:1 bin_size:20 range:1 
    Best:  8.96311376576
    Mean:  21.9264446189
    Std:   7.62402765453
    Algorithm name: Improved Harmony Search - iter:25000 phmcr:0.85 ppar_min:0.35 ppar_max:0.99 bw_min:1e-05 bw_max:1 
    Best:  16.4929571966
    Mean:  21.4225224398
    Std:   2.86294930037
    Algorithm name: A Simple Genetic Algorithm - gen:500 CR:0.95 M:0.02 elitism:1 mutation:GAUSSIAN (0.1) selection:ROULETTE crossover:EXPONENTIAL 
    Best:  13.0756949382
    Mean:  24.6380674523
    Std:   5.64310813543
    Algorithm name: CMAES - gen:500 cc:-1 cs:-1 c1:-1 cmu:-1 sigma0:0.5 ftol:1e-30 xtol:1e-30 restart:1
    Best:  11.657322204
    Mean:  25.8141356738
    Std:   9.64012732446
    Algorithm name: Artificial Bee Colony optimization - gen:250 limit:20 
    Best:  13.5434076338
    Mean:  25.726801883                                                                                                                                        
 Std:   4.14409297815
Clone this wiki locally