Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

fix(tf): apply exclude types to se_atten_v2 switch #3651

Merged
merged 4 commits into from
Apr 8, 2024
Merged
Show file tree
Hide file tree
Changes from 3 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 4 additions & 0 deletions deepmd/tf/descriptor/se_atten.py
Original file line number Diff line number Diff line change
Expand Up @@ -704,6 +704,10 @@
tf.reshape(self.avg_looked_up, [-1, 1]), [1, self.ndescrpt]
),
)
self.recovered_switch *= tf.reshape(

Check warning on line 707 in deepmd/tf/descriptor/se_atten.py

View check run for this annotation

Codecov / codecov/patch

deepmd/tf/descriptor/se_atten.py#L707

Added line #L707 was not covered by tests
tf.slice(tf.reshape(mask, [-1, 4]), [0, 0], [-1, 1]),
[-1, natoms[0], self.sel_all_a[0]],
)
else:
inputs_i *= mask
if nvnmd_cfg.enable and nvnmd_cfg.quantize_descriptor:
Expand Down
132 changes: 132 additions & 0 deletions source/tests/tf/test_model_se_atten.py
Original file line number Diff line number Diff line change
Expand Up @@ -890,3 +890,135 @@
np.testing.assert_allclose(de[0], de[1], rtol=0, atol=deltae)
np.testing.assert_allclose(df[0], df[1], rtol=0, atol=deltad)
np.testing.assert_allclose(dv[0], dv[1], rtol=0, atol=deltad)

def test_smoothness_of_stripped_type_embedding_smooth_model_excluded_types(self):
"""test: auto-diff, continuity of e,f,v."""
jfile = "water_se_atten.json"
jdata = j_loader(jfile)

systems = j_must_have(jdata, "systems")
set_pfx = j_must_have(jdata, "set_prefix")
batch_size = j_must_have(jdata, "batch_size")
Fixed Show fixed Hide fixed
test_size = j_must_have(jdata, "numb_test")
Fixed Show fixed Hide fixed
batch_size = 1
test_size = 1
rcut = j_must_have(jdata["model"]["descriptor"], "rcut")

data = DataSystem(systems, set_pfx, batch_size, test_size, rcut, run_opt=None)

test_data = data.get_test()
numb_test = 1

jdata["model"]["descriptor"].pop("type", None)
jdata["model"]["descriptor"]["ntypes"] = 2
jdata["model"]["descriptor"]["stripped_type_embedding"] = True
jdata["model"]["descriptor"]["smooth_type_embdding"] = True
jdata["model"]["descriptor"]["attn_layer"] = 1
jdata["model"]["descriptor"]["rcut"] = 6.0
jdata["model"]["descriptor"]["rcut_smth"] = 4.0
jdata["model"]["descriptor"]["exclude_types"] = [[0, 0], [0, 1]]
jdata["model"]["descriptor"]["set_davg_zero"] = False
descrpt = DescrptSeAtten(**jdata["model"]["descriptor"], uniform_seed=True)
jdata["model"]["fitting_net"]["ntypes"] = descrpt.get_ntypes()
jdata["model"]["fitting_net"]["dim_descrpt"] = descrpt.get_dim_out()
jdata["model"]["fitting_net"]["dim_rot_mat_1"] = descrpt.get_dim_rot_mat_1()
fitting = EnerFitting(**jdata["model"]["fitting_net"], uniform_seed=True)
typeebd_param = jdata["model"]["type_embedding"]
typeebd = TypeEmbedNet(
ntypes=descrpt.get_ntypes(),
neuron=typeebd_param["neuron"],
activation_function=None,
resnet_dt=typeebd_param["resnet_dt"],
seed=typeebd_param["seed"],
uniform_seed=True,
padding=True,
)
model = EnerModel(descrpt, fitting, typeebd)

input_data = {
"coord": [test_data["coord"]],
"box": [test_data["box"]],
"type": [test_data["type"]],
"natoms_vec": [test_data["natoms_vec"]],
"default_mesh": [test_data["default_mesh"]],
}
model._compute_input_stat(input_data)
model.descrpt.bias_atom_e = data.compute_energy_shift()
# make the original implementation failed
model.descrpt.davg[:] += 1e-1

t_prop_c = tf.placeholder(tf.float32, [5], name="t_prop_c")
t_energy = tf.placeholder(GLOBAL_ENER_FLOAT_PRECISION, [None], name="t_energy")
t_force = tf.placeholder(GLOBAL_TF_FLOAT_PRECISION, [None], name="t_force")
t_virial = tf.placeholder(GLOBAL_TF_FLOAT_PRECISION, [None], name="t_virial")
t_atom_ener = tf.placeholder(
GLOBAL_TF_FLOAT_PRECISION, [None], name="t_atom_ener"
)
t_coord = tf.placeholder(GLOBAL_TF_FLOAT_PRECISION, [None], name="i_coord")
t_type = tf.placeholder(tf.int32, [None], name="i_type")
t_natoms = tf.placeholder(tf.int32, [model.ntypes + 2], name="i_natoms")
t_box = tf.placeholder(GLOBAL_TF_FLOAT_PRECISION, [None, 9], name="i_box")
t_mesh = tf.placeholder(tf.int32, [None], name="i_mesh")
is_training = tf.placeholder(tf.bool)
inputs_dict = {}

model_pred = model.build(
t_coord,
t_type,
t_natoms,
t_box,
t_mesh,
inputs_dict,
suffix=self.filename
+ "-"
+ inspect.stack()[0][3]
+ "test_model_se_atten_model_compressible_excluded_types",
reuse=False,
)
energy = model_pred["energy"]
force = model_pred["force"]
virial = model_pred["virial"]

feed_dict_test = {
t_prop_c: test_data["prop_c"],
t_energy: test_data["energy"][:numb_test],
t_force: np.reshape(test_data["force"][:numb_test, :], [-1]),
t_virial: np.reshape(test_data["virial"][:numb_test, :], [-1]),
t_atom_ener: np.reshape(test_data["atom_ener"][:numb_test, :], [-1]),
t_coord: np.reshape(test_data["coord"][:numb_test, :], [-1]),
t_box: test_data["box"][:numb_test, :],
t_type: np.reshape(test_data["type"][:numb_test, :], [-1]),
t_natoms: test_data["natoms_vec"],
t_mesh: test_data["default_mesh"],
is_training: False,
}
sess = self.cached_session().__enter__()
sess.run(tf.global_variables_initializer())
[pe, pf, pv] = sess.run([energy, force, virial], feed_dict=feed_dict_test)
pf, pv = pf.reshape(-1), pv.reshape(-1)

eps = 1e-4
delta = 1e-6
fdf, fdv = finite_difference_fv(
sess, energy, feed_dict_test, t_coord, t_box, delta=eps
)
np.testing.assert_allclose(pf, fdf, delta)
np.testing.assert_allclose(pv, fdv, delta)

tested_eps = [1e-3, 1e-4, 1e-5, 1e-6, 1e-7]
for eps in tested_eps:
deltae = 1e-15
deltad = 1e-15
de, df, dv = check_smooth_efv(
sess,
energy,
force,
virial,
feed_dict_test,
t_coord,
jdata["model"]["descriptor"]["rcut"],
delta=eps,
)
np.testing.assert_allclose(de[0], de[1], rtol=0, atol=deltae)
np.testing.assert_allclose(df[0], df[1], rtol=0, atol=deltad)
np.testing.assert_allclose(dv[0], dv[1], rtol=0, atol=deltad)
Loading