Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Chore: refactor LinearAtomicModel serialize/deserialize #3451

Merged
merged 13 commits into from
Mar 13, 2024
1 change: 1 addition & 0 deletions deepmd/dpmodel/atomic_model/dp_atomic_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -26,6 +26,7 @@
)


@BaseAtomicModel.register("standard")
class DPAtomicModel(BaseAtomicModel):
"""Model give atomic prediction of some physical property.

Expand Down
47 changes: 20 additions & 27 deletions deepmd/dpmodel/atomic_model/linear_atomic_model.py
Original file line number Diff line number Diff line change
@@ -1,9 +1,5 @@
# SPDX-License-Identifier: LGPL-3.0-or-later
import copy
import sys
from abc import (
abstractmethod,
)
from typing import (
Dict,
List,
Expand Down Expand Up @@ -225,40 +221,38 @@
]
)

@staticmethod
def serialize(models, type_map) -> dict:
def serialize(self) -> dict:
return {
"@class": "Model",
"type": "linear",
"@version": 1,
"models": [model.serialize() for model in models],
"model_name": [model.__class__.__name__ for model in models],
"type_map": type_map,
"models": [model.serialize() for model in self.models],
"type_map": self.type_map,
}

@staticmethod
def deserialize(data) -> Tuple[List[BaseAtomicModel], List[str]]:
@classmethod
def deserialize(cls, data: dict) -> "LinearEnergyAtomicModel":
data = copy.deepcopy(data)
check_version_compatibility(data.pop("@version", 1), 1, 1)
data.pop("@class")
data.pop("type")
model_names = data["model_name"]
type_map = data["type_map"]
type_map = data.pop("type_map")
models = [
getattr(sys.modules[__name__], name).deserialize(model)
for name, model in zip(model_names, data["models"])
BaseAtomicModel.get_class_by_type(model["type"]).deserialize(model)
for model in data["models"]
]
return models, type_map
data.pop("models")
return cls(models, type_map, **data)

@abstractmethod
def _compute_weight(
self,
extended_coord: np.ndarray,
extended_atype: np.ndarray,
nlists_: List[np.ndarray],
) -> np.ndarray:
anyangml marked this conversation as resolved.
Show resolved Hide resolved
"""This should be a list of user defined weights that matches the number of models to be combined."""
raise NotImplementedError
nmodels = len(self.models)
return [np.ones(1) / nmodels for _ in range(nmodels)]

Check warning on line 255 in deepmd/dpmodel/atomic_model/linear_atomic_model.py

View check run for this annotation

Codecov / codecov/patch

deepmd/dpmodel/atomic_model/linear_atomic_model.py#L254-L255

Added lines #L254 - L255 were not covered by tests
anyangml marked this conversation as resolved.
Show resolved Hide resolved

def get_dim_fparam(self) -> int:
"""Get the number (dimension) of frame parameters of this atomic model."""
Expand Down Expand Up @@ -335,10 +329,10 @@
{
"@class": "Model",
"type": "zbl",
"@version": 1,
"models": LinearEnergyAtomicModel.serialize(
[self.dp_model, self.zbl_model], self.type_map
),
"@version": 2,
"models": LinearEnergyAtomicModel(
models=[self.models[0], self.models[1]], type_map=self.type_map
).serialize(),
"sw_rmin": self.sw_rmin,
"sw_rmax": self.sw_rmax,
"smin_alpha": self.smin_alpha,
Expand All @@ -349,16 +343,15 @@
@classmethod
def deserialize(cls, data) -> "DPZBLLinearEnergyAtomicModel":
data = copy.deepcopy(data)
check_version_compatibility(data.pop("@version", 1), 1, 1)
check_version_compatibility(data.pop("@version", 1), 2, 1)
data.pop("@class")
data.pop("type")
sw_rmin = data.pop("sw_rmin")
sw_rmax = data.pop("sw_rmax")
smin_alpha = data.pop("smin_alpha")

([dp_model, zbl_model], type_map) = LinearEnergyAtomicModel.deserialize(
data.pop("models")
)
linear_model = LinearEnergyAtomicModel.deserialize(data.pop("models"))
dp_model, zbl_model = linear_model.models
type_map = linear_model.type_map

return cls(
dp_model=dp_model,
Expand Down
1 change: 1 addition & 0 deletions deepmd/dpmodel/atomic_model/pairtab_atomic_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -25,6 +25,7 @@
)


@BaseAtomicModel.register("pairtab")
class PairTabAtomicModel(BaseAtomicModel):
"""Pairwise tabulation energy model.

Expand Down
1 change: 1 addition & 0 deletions deepmd/pt/model/atomic_model/dp_atomic_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -33,6 +33,7 @@
log = logging.getLogger(__name__)


@BaseAtomicModel.register("standard")
class DPAtomicModel(torch.nn.Module, BaseAtomicModel):
"""Model give atomic prediction of some physical property.

Expand Down
52 changes: 25 additions & 27 deletions deepmd/pt/model/atomic_model/linear_atomic_model.py
Original file line number Diff line number Diff line change
@@ -1,9 +1,5 @@
# SPDX-License-Identifier: LGPL-3.0-or-later
import copy
import sys
from abc import (
abstractmethod,
)
from typing import (
Dict,
List,
Expand Down Expand Up @@ -260,35 +256,38 @@
]
)

@staticmethod
def serialize(models, type_map) -> dict:
def serialize(self) -> dict:
return {
"@class": "Model",
"@version": 1,
"type": "linear",
"models": [model.serialize() for model in models],
"model_name": [model.__class__.__name__ for model in models],
"type_map": type_map,
"models": [model.serialize() for model in self.models],
"type_map": self.type_map,
}

@staticmethod
def deserialize(data) -> Tuple[List[BaseAtomicModel], List[str]]:
@classmethod
def deserialize(cls, data: dict) -> "LinearEnergyAtomicModel":
data = copy.deepcopy(data)
check_version_compatibility(data.pop("@version", 1), 1, 1)
model_names = data["model_name"]
type_map = data["type_map"]
data.pop("@class")
data.pop("type")
type_map = data.pop("type_map")
models = [
getattr(sys.modules[__name__], name).deserialize(model)
for name, model in zip(model_names, data["models"])
BaseAtomicModel.get_class_by_type(model["type"]).deserialize(model)
for model in data["models"]
]
return models, type_map
data.pop("models")
return cls(models, type_map, **data)

@abstractmethod
def _compute_weight(
self, extended_coord, extended_atype, nlists_
) -> List[torch.Tensor]:
"""This should be a list of user defined weights that matches the number of models to be combined."""
raise NotImplementedError
nmodels = len(self.models)
return [

Check warning on line 287 in deepmd/pt/model/atomic_model/linear_atomic_model.py

View check run for this annotation

Codecov / codecov/patch

deepmd/pt/model/atomic_model/linear_atomic_model.py#L286-L287

Added lines #L286 - L287 were not covered by tests
torch.ones(1, dtype=torch.float64, device=env.DEVICE) / nmodels
for _ in range(nmodels)
]

def get_dim_fparam(self) -> int:
"""Get the number (dimension) of frame parameters of this atomic model."""
Expand Down Expand Up @@ -400,11 +399,11 @@
dd.update(
{
"@class": "Model",
"@version": 1,
"@version": 2,
"type": "zbl",
"models": LinearEnergyAtomicModel.serialize(
[self.models[0], self.models[1]], self.type_map
),
"models": LinearEnergyAtomicModel(
models=[self.models[0], self.models[1]], type_map=self.type_map
).serialize(),
"sw_rmin": self.sw_rmin,
"sw_rmax": self.sw_rmax,
"smin_alpha": self.smin_alpha,
Expand All @@ -415,14 +414,13 @@
@classmethod
def deserialize(cls, data) -> "DPZBLLinearEnergyAtomicModel":
data = copy.deepcopy(data)
check_version_compatibility(data.pop("@version", 1), 1, 1)
check_version_compatibility(data.pop("@version", 1), 2, 1)
sw_rmin = data.pop("sw_rmin")
sw_rmax = data.pop("sw_rmax")
smin_alpha = data.pop("smin_alpha")

[dp_model, zbl_model], type_map = LinearEnergyAtomicModel.deserialize(
data.pop("models")
)
linear_model = LinearEnergyAtomicModel.deserialize(data.pop("models"))
dp_model, zbl_model = linear_model.models
type_map = linear_model.type_map

data.pop("@class", None)
data.pop("type", None)
Expand Down
1 change: 1 addition & 0 deletions deepmd/pt/model/atomic_model/pairtab_atomic_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -35,6 +35,7 @@
)


@BaseAtomicModel.register("pairtab")
class PairTabAtomicModel(torch.nn.Module, BaseAtomicModel):
"""Pairwise tabulation energy model.

Expand Down