Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Ent param init #58

Merged
merged 9 commits into from
Nov 8, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion pyproject.toml
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
[tool.poetry]
name = "qml-essentials"
version = "0.1.15"
version = "0.1.16"
description = ""
authors = ["Melvin Strobl <[email protected]>", "Maja Franz <[email protected]>"]
readme = "README.md"
Expand Down
27 changes: 18 additions & 9 deletions qml_essentials/entanglement.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,10 @@ class Entanglement:

@staticmethod
def meyer_wallach(
model: Model, n_samples: int, seed: Optional[int], **kwargs: Any # type: ignore
model: Model,
n_samples: Optional[int | None],
seed: Optional[int],
**kwargs: Any,
) -> float:
"""
Calculates the entangling capacity of a given quantum circuit
Expand All @@ -21,6 +24,7 @@ def meyer_wallach(
Args:
model (Callable): Function that models the quantum circuit.
n_samples (int): Number of samples per qubit.
If None or < 0, the current parameters of the model are used
seed (Optional[int]): Seed for the random number generator.
kwargs (Any): Additional keyword arguments for the model function.

Expand All @@ -29,26 +33,31 @@ def meyer_wallach(
to be between 0.0 and 1.0.
"""
rng = np.random.default_rng(seed)
if n_samples > 0:
if n_samples is not None and n_samples > 0:
assert seed is not None, "Seed must be provided when samples > 0"
# TODO: maybe switch to JAX rng
model.initialize_params(rng=rng, repeat=n_samples)
params = model.params
else:
if seed is not None:
log.warning("Seed is ignored when samples is 0")
n_samples = 1
model.initialize_params(rng=rng, repeat=1)

samples = model.params.shape[-1]
mw_measure = np.zeros(samples, dtype=complex)
if len(model.params.shape) <= 2:
params = model.params.reshape(*model.params.shape, 1)
else:
log.info(f"Using sample size of model params: {model.params.shape[-1]}")
params = model.params

n_samples = params.shape[-1]
mw_measure = np.zeros(n_samples, dtype=complex)
qb = list(range(model.n_qubits))

# TODO: vectorize in future iterations
for i in range(samples):
for i in range(n_samples):
# implicitly set input to none in case it's not needed
kwargs.setdefault("inputs", None)
# explicitly set execution type because everything else won't work
U = model(params=model.params[:, :, i], execution_type="density", **kwargs)
U = model(params=params[:, :, i], execution_type="density", **kwargs)

entropy = 0

Expand All @@ -58,7 +67,7 @@ def meyer_wallach(

mw_measure[i] = 1 - entropy / model.n_qubits

mw = 2 * np.sum(mw_measure.real) / samples
mw = 2 * np.sum(mw_measure.real) / n_samples

# catch floating point errors
entangling_capability = min(max(mw, 0.0), 1.0)
Expand Down
35 changes: 24 additions & 11 deletions qml_essentials/model.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,7 @@
import hashlib
import os
import warnings
from autograd.numpy import numpy_boxes

from qml_essentials.ansaetze import Ansaetze, Circuit

Expand Down Expand Up @@ -441,8 +442,8 @@ def __str__(self) -> str:

def __call__(
self,
params: np.ndarray,
inputs: np.ndarray,
params: Optional[np.ndarray] = None,
inputs: Optional[np.ndarray] = None,
noise_params: Optional[Dict[str, float]] = None,
cache: Optional[bool] = False,
execution_type: Optional[str] = None,
Expand All @@ -452,9 +453,11 @@ def __call__(
Perform a forward pass of the quantum circuit.

Args:
params (np.ndarray): Weight vector of shape
params (Optional[np.ndarray]): Weight vector of shape
[n_layers, n_qubits*n_params_per_layer].
inputs (np.ndarray): Input vector of shape [1].
If None, model internal parameters are used.
inputs (Optional[np.ndarray]): Input vector of shape [1].
If None, zeros are used.
noise_params (Optional[Dict[str, float]], optional): The noise parameters.
Defaults to None which results in the last
set noise parameters being used.
Expand Down Expand Up @@ -488,8 +491,8 @@ def __call__(

def _forward(
self,
params: np.ndarray,
inputs: np.ndarray,
params: Optional[np.ndarray] = None,
inputs: Optional[np.ndarray] = None,
noise_params: Optional[Dict[str, float]] = None,
cache: Optional[bool] = False,
execution_type: Optional[str] = None,
Expand All @@ -499,9 +502,11 @@ def _forward(
Perform a forward pass of the quantum circuit.

Args:
params (np.ndarray): Weight vector of shape
params (Optional[np.ndarray]): Weight vector of shape
[n_layers, n_qubits*n_params_per_layer].
inputs (np.ndarray): Input vector of shape [1].
If None, model internal parameters are used.
inputs (Optional[np.ndarray]): Input vector of shape [1].
If None, zeros are used.
noise_params (Optional[Dict[str, float]], optional): The noise parameters.
Defaults to None which results in the last
set noise parameters being used.
Expand Down Expand Up @@ -533,6 +538,14 @@ def _forward(
if execution_type is not None:
self.execution_type = execution_type

if params is None:
params = self.params
else:
if numpy_boxes.ArrayBox == type(params):
self.params = params._value
else:
self.params = params

# the qasm representation contains the bound parameters,
# thus it is ok to hash that
hs = hashlib.md5(
Expand All @@ -542,7 +555,7 @@ def _forward(
"n_layers": self.n_layers,
"pqc": self.pqc.__class__.__name__,
"dru": self.data_reupload,
"params": params,
"params": self.params, # use safe-params
"noise_params": self.noise_params,
"execution_type": self.execution_type,
"inputs": inputs,
Expand All @@ -568,7 +581,7 @@ def _forward(
# if density matrix requested or noise params used
if self.execution_type == "density" or self.noise_params is not None:
result = self.circuit_mixed(
params=params,
params=params, # use arraybox params
inputs=inputs,
)
else:
Expand All @@ -578,7 +591,7 @@ def _forward(
)
else:
result = self.circuit(
params=params,
params=params, # use arraybox params
inputs=inputs,
)

Expand Down
23 changes: 23 additions & 0 deletions tests/test_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -81,6 +81,14 @@ def test_parameters() -> None:
},
]

# Test the most minimal call
model = Model(
n_qubits=2,
n_layers=1,
circuit_type="Circuit_19",
)
assert (model() == model(model.params)).all()

for test_case in test_cases:
model = Model(
n_qubits=2,
Expand Down Expand Up @@ -645,3 +653,18 @@ def test_parity() -> None:
assert not np.allclose(
result_a, result_b
), f"Models should be different! Got {result_a} and {result_b}"


@pytest.mark.smoketest
def test_params_store() -> None:
model = Model(
n_qubits=2,
n_layers=1,
circuit_type="Circuit_1",
)
opt = qml.AdamOptimizer(stepsize=0.01)

def cost(params):
return model(params=params, inputs=np.array([0])).mean()._value

params, cost = opt.step_and_cost(cost, model.params)