Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

create new scribe parser that uses top and bottom #509

Merged
merged 4 commits into from
Dec 2, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
104 changes: 104 additions & 0 deletions lc_classification_step/lc_classification/core/parsers/scribe_parser.py
Original file line number Diff line number Diff line change
Expand Up @@ -219,3 +219,107 @@ def get_scribe_commands(
)

return KafkaOutput(commands_list)


class TopBottomScribeParser(KafkaParser):
def __init__(self, *, classifier_name: str):
super().__init__(self)
self.classifier_name = classifier_name

def parse(self, to_parse: OutputDTO, **kwargs) -> KafkaOutput[List[dict]]:
"""Parse data output from the Random Forest to scribe commands.
Parameters
----------
to_parse : OutputDTO
Output from the model. Has two attributes:
probabilities and hierarchical.

OutputDTO.probabilities is a dataframe
OutputDTO.hierarchical is a Dict[str,pd.DataFrame]
with two keys: "top" and "children" where children is a Dict[str, pd.DataFrame]

Examples
--------
to_parse.hierarchical

{
'top': Periodic Stochastic Transient
oid
vbKsodtqMI 0.434 0.21 0.356,
'children': {
'Transient': SLSN SNII SNIa SNIbc
oid
vbKsodtqMI 0.082 0.168 0.444 0.306,
'Stochastic': AGN Blazar CV/Nova QSO YSO
oid
vbKsodtqMI 0.032 0.056 0.746 0.01 0.156,
'Periodic': CEP DSCT E LPV Periodic-Other RRL
oid
vbKsodtqMI 0.218 0.082 0.158 0.028 0.12 0.394
}
}

to_parse.probabilities
SLSN SNII SNIa SNIbc ... E LPV Periodic-Other RRL
oid ...
vbKsodtqMI 0.029192 0.059808 0.158064 0.108936 ... 0.068572 0.012152 0.05208 0.170996,
}
"""
if len(to_parse.probabilities) == 0:
return KafkaOutput([])
probabilities = to_parse.probabilities
top = to_parse.hierarchical["top"]
hierarchical = [
to_parse.hierarchical["children"][ch]
for ch in to_parse.hierarchical["children"].keys()
]
hierarchical = pd.concat(hierarchical)
probabilities["classifier_name"] = self._get_classifier_name()
top["classifier_name"] = self._get_classifier_name("top")
hierarchical["classifier_name"] = self._get_classifier_name("bottom")

results = [top, hierarchical, probabilities]

results = pd.concat(results)
if not results.index.name == "oid":
try:
results.set_index("oid", inplace=True)
except KeyError as e:
if not is_all_strings(results.index.values):
raise e

commands = []

def get_scribe_messages(classifications_by_classifier: pd.DataFrame):
class_names = classifications_by_classifier.columns
for idx, row in classifications_by_classifier.iterrows():
command = {
"collection": "object",
"type": "update_probabilities",
"criteria": {
"_id": idx,
},
"data": {
"classifier_name": row["classifier_name"],
"classifier_version": kwargs["classifier_version"],
},
"options": {"upsert": True, "set_on_insert": False},
}
for class_name in class_names:
command["data"].update({class_name: row[class_name]})
commands.append(command)
return classifications_by_classifier

for oid in results.index.unique():
results.loc[[oid], :].groupby(
"classifier_name", group_keys=False
).apply(get_scribe_messages)

return KafkaOutput(commands)

def _get_classifier_name(self, suffix=None):
return (
self.classifier_name
if suffix is None
else f"{self.classifier_name}_{suffix}"
)
Loading
Loading