In this study, we aim to use a DDPM to learn the prior distribution of images and ultimately solve non-blind and blind problems in various image restoration tasks.
-
Our model utilizes pretrained DDPMs on ImageNet. https://github.com/openai/guided-diffusion
-
Datasets can be download in https://paperswithcode.com/.
For real-world datasets, it is necessary to add degradation in advance and form a .npz file.
The code is the October version.
MODEL_FLAGS="--attention_resolutions 32,16,8 --class_cond False --diffusion_steps 1000 --image_size 256 --learn_sigma True --noise_schedule linear --num_channels 256 --num_head_channels 64 --num_res_blocks 2 --resblock_updown True --use_fp16 True --use_scale_shift_norm True"
python deblurring.py \
$MODEL_FLAGS \
--save_dir [Path of storing output results]
--base_samples [Path of the npz file corresponding to the downloaded Imagenet dataset]
MODEL_FLAGS="--attention_resolutions 32,16,8 --class_cond False --diffusion_steps 1000 --image_size 256 --learn_sigma True --noise_schedule linear --num_channels 256 --num_head_channels 64 --num_res_blocks 2 --resblock_updown True --use_fp16 True --use_scale_shift_norm True"
python blind_image_restoration.py \
$MODEL_FLAGS \
--save_dir [Path of storing output results]
--base_samples [Path of the blind image restoration dataset]
MODEL_FLAGS="--attention_resolutions 32,16,8 --class_cond False --diffusion_steps 1000 --image_size 256 --learn_sigma True --noise_schedule linear --num_channels 256 --num_head_channels 64 --num_res_blocks 2 --resblock_updown True --use_fp16 True --use_scale_shift_norm True"
python multi_restoration.py \
$MODEL_FLAGS \
--save_dir [Path of storing output results]
--base_samples [Path of the multi-degradation dataset]
MODEL_FLAGS="--attention_resolutions 32,16,8 --class_cond False --diffusion_steps 1000 --image_size 256 --learn_sigma True --noise_schedule linear --num_channels 256 --num_head_channels 64 --num_res_blocks 2 --resblock_updown True --use_fp16 True --use_scale_shift_norm True"
python lowlight.py \
$MODEL_FLAGS \
--save_dir [Path of storing output results]
--base_samples [Path of the low-light enhancement dataset]
The authors would like to thank Zhaoyang Lyu for his technical assistance. This work was supported by the National Natural Science Foundation of China (U2033209)
Our paper is inspired by:
- https://generativediffusionprior.github.io/(the GDP repo)
- https://0x3f3f3f3fun.github.io/projects/diffbir/(the DiffBIR repo)
Thanks for their awesome works!
If you have any inquiries, please feel free to consult via email [email protected] .