-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathlowlight.py
291 lines (239 loc) · 12.3 KB
/
lowlight.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
"""
Like image_sample.py, but use a noisy image classifier to guide the sampling
process towards more realistic images.
"""
import argparse
import os
import numpy as np
import torch as th
import torch.distributed as dist
import torch.nn.functional as F
# from guided_diffusion import dist_util, logger
from guided_diffusion import logger
from guided_diffusion.script_util_x0_enhancement import (
NUM_CLASSES,
model_and_diffusion_defaults,
create_model_and_diffusion,
create_model_and_diffusion_direct,
add_dict_to_argparser,
args_to_dict,
)
from save_image_utils import save_images
from npz_dataset import NpzDataset, DummyDataset
from imagenet_dataloader.imagenet_dataset import ImageFolderDataset
import torchvision.transforms as transforms
from PIL import Image,ImageFilter
import cv2
import pdb
import random
import math
import torch
import torch.nn as nn
import MyLoss
os.environ['CUDA_VISIBLE_DEVICES']='0'
def get_dataset(path, global_rank, world_size):
if os.path.isfile(path): # base_samples could be store in a .npz file
dataset = NpzDataset(path, rank=global_rank, world_size=world_size)
else:
dataset = ImageFolderDataset(path, label_file='./imagenet_dataloader/imagenet_val_labels.pkl', transform=None,
permute=True, normalize=True, rank=global_rank, world_size=world_size)
return dataset
def main():
args = create_argparser().parse_args()
os.environ['CUDA_VISIBLE_DEVICES'] = str(args.device)
device = th.device('cuda:0')
save_dir = args.save_dir if len(args.save_dir)>0 else None
# dist_util.setup_dist()
logger.configure(dir = save_dir)
logger.log("creating model and diffusion...")
model, diffusion = create_model_and_diffusion_direct(
**args_to_dict(args, model_and_diffusion_defaults().keys())
)
model.load_state_dict(
th.load(args.model_path, map_location="cpu")
)
model.to(device)
if args.use_fp16:
model.convert_to_fp16()
model.eval()
L_exp = MyLoss.L_exp(8,0.3)
L_color = MyLoss.L_color()
L_TV = MyLoss.L_TV()
def light_cond_fn(x, t, weight=None, light_mask=None,guidance_scale=None, corner=None, y=None, x_lr=None, sample_noisy_x_lr=False, diffusion=None, sample_noisy_x_lr_t_thred=None):
assert y is not None
with th.enable_grad():
x_in = x.detach().requires_grad_(True)
loss = 0
if not x_lr is None:
x_lr = x_lr[:, :, corner[0]:corner[0]+corner[2], corner[1]:corner[1]+corner[2]]
device_x_in_lr = x_in.device
x_in_lr = x_in
weight = nn.Parameter(weight)
weight.requires_grad_()
light_mask.requires_grad_()
in_channels = 3
conv_layer = nn.Conv2d(in_channels, in_channels, kernel_size=3, padding=1, bias=False,groups=3)
conv_layer.weight = nn.Parameter(weight)
x_in_lr = conv_layer((x_in_lr+1)/2) + light_mask
# x_in_lr = conv_layer((x_in_lr+1)/2)
if sample_noisy_x_lr:
t_numpy = t.detach().cpu().numpy()
spaced_t_steps = [diffusion.timestep_reverse_map[t_step] for t_step in t_numpy]
if sample_noisy_x_lr_t_thred is None or spaced_t_steps[0] < sample_noisy_x_lr_t_thred:
print('Sampling noisy lr')
spaced_t_steps = th.Tensor(spaced_t_steps).to(t.device).to(t.dtype)
x_lr = diffusion.q_sample(x_lr, spaced_t_steps)
x_lr = x_lr.to(device_x_in_lr)
x_lr = (x_lr + 1) / 2
mse = (x_in_lr - x_lr) ** 2
mse = mse.mean(dim=(1,2,3))
mse = mse.sum()
# loss_exp = torch.mean(L_exp(x_in))
# loss_col = torch.mean(L_color(x_in))
# Loss_TV = L_TV(light_mask)
loss = loss - mse * args.img_guidance_scale
# loss = loss + mse * guidance_scale
conv_layer.zero_grad()
mse.backward(retain_graph=True)
grad_conv_kernel = conv_layer.weight.grad
weight = weight- grad_conv_kernel
light_mask = light_mask - th.autograd.grad(mse, light_mask,retain_graph=True)[0]
print('step t %d img guidance has been used, mse is %.8f * %d = %.2f' % (t[0], mse, args.img_guidance_scale, mse*args.img_guidance_scale))
return weight, light_mask, th.autograd.grad(loss, x_in)[0],mse
def model_fn(x, t, y=None):
assert y is not None
# assert light_factor is not None
return model(x, t, y if args.class_cond else None)
logger.log("loading dataset...")
# load gan or vae generated images
if args.start_from_scratch and args.use_img_for_guidance:
pass
else:
if args.start_from_scratch:
dataset = DummyDataset(args.num_samples, rank=args.global_rank, world_size=args.world_size)
else:
dataset = get_dataset(args.dataset_path, args.global_rank, args.world_size)
dataloader = th.utils.data.DataLoader(dataset, batch_size=args.batch_size, shuffle=False, num_workers=16)
# load lr images that are used for guidance
if args.use_img_for_guidance:
dataset_lr = get_dataset(args.base_samples, args.global_rank, args.world_size)
dataloader_lr = th.utils.data.DataLoader(dataset_lr, batch_size=args.batch_size, shuffle=False, num_workers=16)
if args.start_from_scratch:
dataset = DummyDataset(len(dataset_lr), rank=0, world_size=1)
dataloader = th.utils.data.DataLoader(dataset, batch_size=args.batch_size, shuffle=False, num_workers=16)
dataloader = zip(dataloader, dataloader_lr)
# args.save_png_files=True
if args.save_png_files:
print(logger.get_dir())
os.makedirs(os.path.join(logger.get_dir(), 'mask'), exist_ok=True)
os.makedirs(os.path.join(logger.get_dir(), 'weight'), exist_ok=True)
os.makedirs(os.path.join(logger.get_dir(), 'gt'), exist_ok=True)
os.makedirs(os.path.join(logger.get_dir(), 'lr'), exist_ok=True)
start_idx = args.global_rank * dataset.num_samples_per_rank
logger.log("sampling...")
all_images = []
all_labels = []
for i, data in enumerate(dataloader):
if args.use_img_for_guidance:
image, label = data[0]
image_lr, label = data[1]
cond_fn = lambda x,t,weight,light_mask,guidance_scale,corner,y : light_cond_fn(x, t, weight=weight,light_mask=light_mask,guidance_scale=guidance_scale, corner=corner, y=y, x_lr=image_lr, sample_noisy_x_lr=args.sample_noisy_x_lr, diffusion=diffusion, sample_noisy_x_lr_t_thred=args.sample_noisy_x_lr_t_thred)
else:
image, label = data
cond_fn = lambda x,t,y : general_cond_fn(x, t, y=y, x_lr=None)
if args.start_from_scratch:
shape = (image.shape[0], 3, 256, 256)
else:
shape = list(image.shape)
if args.start_from_scratch and not args.use_img_for_guidance:
classes = th.randint(low=0, high=NUM_CLASSES, size=(shape[0],), device=device)
else:
classes = label.to(device).long()
weight = th.rand([3,1,3,3], device=device)/100
light_mask = th.rand([256,256], device=device)/10000
guidance_scale = torch.tensor(80000)
image = image.to(device)
model_kwargs = {}
model_kwargs["y"] = classes
sample_fn = (
diffusion.p_sample_loop if not args.use_ddim else diffusion.ddim_sample_loop
)
sample_y = image_lr
if args.start_from_scratch:
sample, weight, light_mask, guidance_scale = sample_fn(
model_fn,
shape,
weight,
light_mask,
guidance_scale,
sample_y,
clip_denoised=args.clip_denoised,
model_kwargs=model_kwargs,
cond_fn=cond_fn,
device=device
)
else:
sample = sample_fn(
model_fn,
shape,
clip_denoised=args.clip_denoised,
model_kwargs=model_kwargs,
cond_fn=cond_fn,
device=device,
noise=image,
denoise_steps=args.denoise_steps
)
sample = ((sample + 1) * 127.5).clamp(0, 255).to(th.uint8)
sample = sample.permute(0, 2, 3, 1)
sample = sample.contiguous()
image_lr = ((image_lr + 1) * 127.5).clamp(0, 255).to(th.uint8)
image_lr = image_lr.permute(0, 2, 3, 1)
image_lr = image_lr.contiguous()
light_mask = ((light_mask + 1) * 127.5).clamp(0, 255).to(th.uint8)
light_mask = light_mask.unsqueeze(0).unsqueeze(0).repeat(1,3,1,1).permute(0, 2, 3, 1)
light_mask = light_mask.contiguous()
light_mask = light_mask.detach().cpu().numpy()
sample = sample.detach().cpu().numpy()
classes = classes.detach().cpu().numpy()
image_lr = image_lr.detach().cpu().numpy()
if args.save_png_files:
save_images(sample, classes, start_idx + len(all_images) * args.batch_size, os.path.join(logger.get_dir(), 'images'))
save_images(light_mask, classes, start_idx + len(all_images) * args.batch_size, os.path.join(logger.get_dir(), 'mask'))
save_images(image_lr, classes, start_idx + len(all_images) * args.batch_size, os.path.join(logger.get_dir(), 'lr'))
all_images.append(sample)
all_labels.append(classes)
logger.log(f"created {len(all_images) * args.batch_size} samples")
# dist.barrier()
logger.log("sampling complete")
def create_argparser():
defaults = dict(
clip_denoised=True,
num_samples=100,
batch_size=1,
use_ddim=False,
model_path="",
)
defaults.update(model_and_diffusion_defaults())
parser = argparse.ArgumentParser()
add_dict_to_argparser(parser, defaults)
parser.add_argument("--device", default=0, type=int, help='the cuda device to use to generate images')
parser.add_argument("--global_rank", default=0, type=int, help='global rank of this process')
parser.add_argument("--world_size", default=1, type=int, help='the total number of ranks')
parser.add_argument("--save_dir", type=str, help='the directory to save the generate images')
parser.add_argument("--save_png_files", action='store_false', help='whether to save the generate images into individual png files')
parser.add_argument("--save_numpy_array", action='store_true', help='whether to save the generate images into a single numpy array')
parser.add_argument("--denoise_steps", default=25, type=int, help='number of denoise steps')
parser.add_argument("--dataset_path", type=str, help='path to the generated images. Could be an npz file or an image folder')
parser.add_argument("--use_img_for_guidance", action='store_false', help='whether to use a (low resolution) image for guidance. If true, we generate an image that is similar to the low resolution image')
parser.add_argument("--img_guidance_scale", default=62000, type=float, help='guidance scale')
parser.add_argument("--base_samples",type=str, help='the directory or npz file to the guidance imgs. This folder should have the same structure as dataset_path, there should be a one to one mapping between images in them')
parser.add_argument("--sample_noisy_x_lr", action='store_true', help='whether to first sample a noisy x_lr, then use it for guidance. ')
parser.add_argument("--sample_noisy_x_lr_t_thred", default=1e8, type=int, help='only for t lower than sample_noisy_x_lr_t_thred, we add noise to lr')
parser.add_argument("--start_from_scratch", action='store_false', help='whether to generate images purely from scratch, not use gan or vae generated samples')
# num_samples is defined elsewhere, num_samples is only valid when start_from_scratch and not use img as guidance
# if use img as guidance, num_samples will be set to num of guidance images
# parser.add_argument("--num_samples", type=int, default=50000, help='num of samples to generate, only valid when start_from_scratch is true')
return parser
import pdb
if __name__ == "__main__":
main()