Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Feature/add sv #38

Merged
merged 6 commits into from
Sep 18, 2023
Merged
Show file tree
Hide file tree
Changes from 5 commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 4 additions & 1 deletion .gitignore
Original file line number Diff line number Diff line change
@@ -1,3 +1,6 @@
# macOS .DS_Store files
.DS_Store

# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
Expand All @@ -22,7 +25,7 @@ var/
wheels/
share/python-wheels/
*.egg-info/
notebooks/
notebooks
.installed.cfg
*.egg
MANIFEST
Expand Down
136 changes: 136 additions & 0 deletions oceanstream/L2_calibrated_data/compute_sv.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,136 @@
"""
compute_sv.py
-------------

Module for computing the volume backscattering strength (Sv) from raw data.
Supported Sonar Models:
- EK60
- AZFP
- EK80
Functions and Classes:
- `SupportedSonarModelsForSv`: An Enum containing the sonar models supported
for Sv computation.
- `WaveformMode`: Enum specifying the waveform mode (CW or BB).
- `EncodeMode`: Enum indicating the encoding mode (complex or power).
- `ComputeSVParams`: Class to validate and structure the parameters passed
to the Sv computation function.
- `compute_sv`: Main function to calculate Sv given an EchoData object
and other optional parameters.

Usage:

To compute Sv for a given EchoData object, `ed`, simply call:
`compute_sv(ed)`
"""

from enum import Enum
from typing import Any, Optional

import echopype as ep
import xarray as xr
from echopype.echodata.echodata import EchoData
from pydantic import BaseModel, ValidationError, field_validator
from pydantic_core.core_schema import FieldValidationInfo


class SupportedSonarModelsForSv(str, Enum):
EK60 = "EK60"
AZFP = "AZFP"
EK80 = "EK80"


class WaveformMode(str, Enum):
CW = "CW"
BB = "BB"


class EncodeMode(str, Enum):
COMPLEX = "complex"
POWER = "power"


class ComputeSVParams(BaseModel):
echodata: Any
env_params: Optional[dict] = None
cal_params: Optional[dict] = None
waveform_mode: Optional[WaveformMode] = None
encode_mode: Optional[EncodeMode] = None

@field_validator("echodata")
def check_echodata_type(cls, value):
if not isinstance(value, EchoData):
raise ValueError(
"Invalid type for echodata. Expected an instance of EchoData."
)
return value

@field_validator("waveform_mode")
def check_waveform_mode(cls, waveform_mode, info: FieldValidationInfo):
echodata = info.data.get("echodata")
is_not_ek80 = echodata and echodata.sonar_model != "EK80"
if is_not_ek80 and waveform_mode is not None:
raise ValueError(
f"waveform_mode is only valid for EK80. \
Got sonar_model='{echodata.sonar_model}'"
)
return waveform_mode

@field_validator("encode_mode")
def check_encode_mode(cls, encode_mode, info: FieldValidationInfo):
echodata = info.data.get("echodata")
is_not_ek80 = echodata and echodata.sonar_model != "EK80"
if is_not_ek80 and encode_mode is not None:
raise ValueError(
f"encode_mode is only valid for EK80. \
Got sonar_model='{echodata.sonar_model}'"
)
return encode_mode


def compute_sv(echodata: EchoData, **kwargs) -> xr.Dataset:
"""
Computes the volume backscattering strength (Sv) from the given echodata.

Parameters:
- echodata (EchoData): The EchoData object containing
sonar data for computation.
- **kwargs: Additional keyword arguments passed to the Sv computation.

Returns:
- xr.Dataset: A Dataset containing the computed Sv values.

Example:
>>> sv_results = compute_sv(echodata_object)
>>> print(sv_results)

Notes:
This function:
- Validates the `echodata`'s sonar model against supported models.
- Uses the `ComputeSVParams` pydantic model to validate parameters.
- Checks if the computed Sv is empty.
- Returns Sv only if it is not empty.

"""
sonar_model = echodata.sonar_model
# Check if the sonar model is supported
try:
SupportedSonarModelsForSv(sonar_model)
except ValueError:
raise ValueError(
f"Sonar model '{sonar_model}'\
is not supported for Sv computation.\
Supported models are \
{list(SupportedSonarModelsForSv)}."
)

# Validate parameters using the pydantic model
try:
ComputeSVParams(echodata=echodata, **kwargs)
except ValidationError as e:
raise ValueError(str(e))
# Compute Sv
Sv = ep.calibrate.compute_Sv(echodata, **kwargs)
# Check if the computed Sv is empty
if Sv["Sv"].values.size == 0:
raise ValueError("Computed Sv is empty!")
return Sv
1 change: 1 addition & 0 deletions requirements.txt
Original file line number Diff line number Diff line change
Expand Up @@ -41,4 +41,5 @@ sphinx_rtd_theme
sphinxcontrib-mermaid
twine
wheel
pydantic
echopype
124 changes: 124 additions & 0 deletions tests/test_compute_sv.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,124 @@
from pathlib import Path

import echopype as ep
import pytest
from pydantic import ValidationError

from oceanstream.L2_calibrated_data.compute_sv import (
ComputeSVParams,
SupportedSonarModelsForSv,
)


# Read test raw data EK60
def _read_EK60_test_data():
bucket = "ncei-wcsd-archive"
base_path = "data/raw/Bell_M._Shimada/SH1707/EK60/"
filename = "Summer2017-D20170620-T011027.raw"
rawdirpath = base_path + filename

s3raw_fpath = f"s3://{bucket}/{rawdirpath}"
storage_opts = {"anon": True}
ed = ep.open_raw(
s3raw_fpath,
sonar_model="EK60",
storage_options=storage_opts
)
return ed


# Read test raw data EK80
def _read_EK80_test_data():
base_url = "noaa-wcsd-pds.s3.amazonaws.com/"
path = "data/raw/Sally_Ride/SR1611/EK80/"
file_name = "D20161109-T163350.raw"
raw_file_address = base_url + path + file_name

rf = Path(raw_file_address)
ed_EK80 = ep.open_raw(
f"https://{rf}",
sonar_model="EK80",
)
return ed_EK80


def test_valid_sonar_models():
assert SupportedSonarModelsForSv("EK60") == SupportedSonarModelsForSv.EK60
assert SupportedSonarModelsForSv("AZFP") == SupportedSonarModelsForSv.AZFP
assert SupportedSonarModelsForSv("EK80") == SupportedSonarModelsForSv.EK80


def test_invalid_sonar_model():
with pytest.raises(ValueError):
SupportedSonarModelsForSv("INVALID_MODEL")

with pytest.raises(ValueError):
SupportedSonarModelsForSv("EK90")


def test_invalid_echodata_type():
# Test with invalid echodata
with pytest.raises(ValidationError):
ComputeSVParams(echodata={"sonar_model": "dummy"})


ed_ek_60 = _read_EK60_test_data()
ed_ek_80 = _read_EK80_test_data()


@pytest.mark.parametrize("ed", [ed_ek_60, ed_ek_80])
def test_waveform_mode_validity_for_ek80(ed):
# Using sonar model from real echodata
if ed.sonar_model == "EK80":
# This should pass
ComputeSVParams(echodata=ed, waveform_mode="CW")
else:
# This should raise ValidationError
# since waveform_mode is only valid for EK80
with pytest.raises(ValidationError):
ComputeSVParams(echodata=ed, waveform_mode="CW")


@pytest.mark.parametrize("ed", [ed_ek_60, ed_ek_80])
def test_encode_mode_validator(ed):
# Using sonar model from real echodata
if ed.sonar_model == "EK80":
# This should pass
ComputeSVParams(echodata=ed, encode_mode="complex")
else:
# This should raise ValidationError since encode_mode
# is only valid for EK80
with pytest.raises(ValidationError):
ComputeSVParams(echodata=ed, encode_mode="complex")


@pytest.mark.parametrize("ed", [ed_ek_60, ed_ek_80])
def test_env_params(ed):
# Test with typical env_params
env_params = {"temperature": "20"}
model = ComputeSVParams(echodata=ed, env_params=env_params)
assert model.env_params == env_params

# Test with missing or None env_params
model = ComputeSVParams(echodata=ed, env_params=None)
assert model.env_params is None

# Test with incorrect env_params
with pytest.raises(ValueError):
ComputeSVParams(echodata=ed, env_params="incorrect_value")


@pytest.mark.parametrize("ed", [ed_ek_60, ed_ek_80])
def test_cal_params(ed):
# Test with typical cal_params
cal_params = {"gain_correction": "0.5"}
model = ComputeSVParams(echodata=ed, cal_params=cal_params)
assert model.cal_params == cal_params

# Test with missing or None cal_params
model = ComputeSVParams(echodata=ed, cal_params=None)
assert model.cal_params is None

# Test with incorrect cal_params
with pytest.raises(ValueError):
ComputeSVParams(echodata=ed, cal_params="incorrect_value")
Loading