Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

First stab at hip linear algebra #39

Merged
merged 1 commit into from
Oct 28, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions cmake/ReSolveFindHipLibraries.cmake
Original file line number Diff line number Diff line change
Expand Up @@ -9,6 +9,8 @@ find_package(hipblas REQUIRED)
target_link_libraries(resolve_hip INTERFACE
#hip::host
hip::device
rocblas
rocsparse
#roc::hipblas
)

Expand Down
4 changes: 2 additions & 2 deletions resolve/hip/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -7,14 +7,14 @@
]]

set(ReSolve_HIP_SRC
# hipKernels.cu
hipKernels.hip
hipVectorKernels.hip
MemoryUtils.hip
)

set(ReSolve_HIP_HEADER_INSTALL
# hipKernels.h
# hipVectorKernels.h
hipVectorKernels.h
HipMemory.hpp
# hip_check_errors.hpp
)
Expand Down
14 changes: 14 additions & 0 deletions resolve/hip/hipKernels.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,14 @@
void mass_inner_product_two_vectors(int n,
int i,
double* vec1,
double* vec2,
double* mvec,
double* result);
void mass_axpy(int n, int i, double* x, double* y, double* alpha);

//needed for matrix inf nrm
void matrix_row_sums(int n,
int nnz,
int* a_ia,
double* a_val,
double* result);
167 changes: 167 additions & 0 deletions resolve/hip/hipKernels.hip
Original file line number Diff line number Diff line change
@@ -0,0 +1,167 @@
#include "hipKernels.h"
#define maxk 1024
#define Tv5 1024

#include <hip/hip_runtime.h>

//computes V^T[u1 u2] where v is n x k and u1 and u2 are nx1
__global__ void MassIPTwoVec_kernel(const double* __restrict__ u1,
const double* __restrict__ u2,
const double* __restrict__ v,
double* result,
const int k,
const int N)
{
int t = threadIdx.x;
int bsize = blockDim.x;

// assume T threads per thread block (and k reductions to be performed)
volatile __shared__ double s_tmp1[Tv5];

volatile __shared__ double s_tmp2[Tv5];
// map between thread index space and the problem index space
int j = blockIdx.x;
s_tmp1[t] = 0.0f;
s_tmp2[t] = 0.0f;
int nn = t;
double can1, can2, cbn;

while(nn < N) {
can1 = u1[nn];
can2 = u2[nn];

cbn = v[N * j + nn];
s_tmp1[t] += can1 * cbn;
s_tmp2[t] += can2 * cbn;

nn += bsize;
}

__syncthreads();

if(Tv5 >= 1024) {
if(t < 512) {
s_tmp1[t] += s_tmp1[t + 512];
s_tmp2[t] += s_tmp2[t + 512];
}
__syncthreads();
}
if(Tv5 >= 512) {
if(t < 256) {
s_tmp1[t] += s_tmp1[t + 256];
s_tmp2[t] += s_tmp2[t + 256];
}
__syncthreads();
}
{
if(t < 128) {
s_tmp1[t] += s_tmp1[t + 128];
s_tmp2[t] += s_tmp2[t + 128];
}
__syncthreads();
}
{
if(t < 64) {
s_tmp1[t] += s_tmp1[t + 64];
s_tmp2[t] += s_tmp2[t + 64];
}
__syncthreads();
}

if(t < 32) {
s_tmp1[t] += s_tmp1[t + 32];
s_tmp2[t] += s_tmp2[t + 32];

s_tmp1[t] += s_tmp1[t + 16];
s_tmp2[t] += s_tmp2[t + 16];

s_tmp1[t] += s_tmp1[t + 8];
s_tmp2[t] += s_tmp2[t + 8];

s_tmp1[t] += s_tmp1[t + 4];
s_tmp2[t] += s_tmp2[t + 4];

s_tmp1[t] += s_tmp1[t + 2];
s_tmp2[t] += s_tmp2[t + 2];

s_tmp1[t] += s_tmp1[t + 1];
s_tmp2[t] += s_tmp2[t + 1];
}
if(t == 0) {
result[blockIdx.x] = s_tmp1[0];
result[blockIdx.x + k] = s_tmp2[0];
}
}


//mass AXPY i.e y = y - x*alpha where alpha is [k x 1], needed in 1 and 2 synch GMRES

__global__ void massAxpy3_kernel(int N,
int k,
const double* x_data,
double* y_data,
const double* alpha) {

unsigned int i = blockIdx.x * blockDim.x + threadIdx.x;

unsigned int t = threadIdx.x;

__shared__ double s_alpha[maxk];
if(t < k) {
s_alpha[t] = alpha[t];
}
__syncthreads();
while (i < N){
double temp = 0.0;
for(int j = 0; j < k; ++j) {
temp += x_data[j * N + i] * s_alpha[j];
}
y_data[i] -= temp;
i += (blockDim.x*gridDim.x);
}
}
__global__ void matrixInfNormPart1(const int n,
const int nnz,
const int* a_ia,
const double* a_val,
double* result) {

// one thread per row, pass through rows
// and sum
// can be done through atomics
//\sum_{j=1}^m abs(a_{ij})

int idx = blockIdx.x*blockDim.x + threadIdx.x;
while (idx < n){
double sum = 0.0f;
for (int i = a_ia[idx]; i < a_ia[idx+1]; ++i) {
sum = sum + fabs(a_val[i]);
}
result[idx] = sum;
idx += (blockDim.x*gridDim.x);
}
}


void mass_inner_product_two_vectors(int n,
int i,
double* vec1,
double* vec2,
double* mvec,
double* result)
{
hipLaunchKernelGGL(MassIPTwoVec_kernel, dim3(i + 1), dim3(1024), 0, 0, vec1, vec2, mvec, result, i + 1, n);
}
void mass_axpy(int n, int i, double* x, double* y, double* alpha)
{
hipLaunchKernelGGL(massAxpy3_kernel, dim3((n + 384 - 1) / 384), dim3(384), 0, 0, n, i, x, y, alpha);
}

void matrix_row_sums(int n,
int nnz,
int* a_ia,
double* a_val,
double* result)
{
hipLaunchKernelGGL(matrixInfNormPart1,dim3(1000),dim3(1024), 0, 0, n, nnz, a_ia, a_val, result);
}
29 changes: 14 additions & 15 deletions resolve/hip/hipVectorKernels.hip
Original file line number Diff line number Diff line change
@@ -1,29 +1,28 @@
#include <resolve/Common.hpp>
#include <resolve/vector/VectorKernels.hpp>

#include "hipVectorKernels.h"
#include <hip/hip_runtime.h>

namespace ReSolve { namespace vector {

namespace kernels {

__global__ void set_const(index_type n, real_type val, real_type* arr)
{
index_type i = blockIdx.x * blockDim.x + threadIdx.x;
if(i < n)
__global__ void set_const(index_type n, real_type val, real_type* arr)
{
arr[i] = val;
index_type i = blockIdx.x * blockDim.x + threadIdx.x;
while (i < n)
{
arr[i] = val;
i += blockDim.x * gridDim.x;
}
}
}

} // namespace kernels

void set_array_const(index_type n, real_type val, real_type* arr)
void set_array_const(index_type n, real_type val, real_type* arr)
{
index_type num_blocks;
index_type block_size = 512;
num_blocks = (n + block_size - 1) / block_size;
kernels::set_const<<<num_blocks, block_size>>>(n, val, arr);
index_type num_blocks;
index_type block_size = 512;
num_blocks = (n + block_size - 1) / block_size;
hipLaunchKernelGGL( kernels::set_const, dim3(num_blocks), dim3(block_size), 0, 0, n, val, arr);
}

}} // namespace ReSolve::vector
}} // namespace ReSolve::vector
13 changes: 13 additions & 0 deletions resolve/matrix/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -22,6 +22,11 @@ set(Matrix_CUDASDK_SRC
MatrixHandlerCuda.cpp
)

# and on HIP
set(Matrix_ROCM_SRC
MatrixHandlerHip.cpp
)

# Header files to be installed
set(Matrix_HEADER_INSTALL
io.hpp
Expand All @@ -37,6 +42,10 @@ if(RESOLVE_USE_CUDA)
set(Matrix_SRC ${Matrix_SRC} ${Matrix_CUDASDK_SRC})
endif()

if(RESOLVE_USE_HIP)
set(Matrix_SRC ${Matrix_SRC} ${Matrix_ROCM_SRC})
endif()


# Build shared library ReSolve::matrix
add_library(resolve_matrix SHARED ${Matrix_SRC})
Expand All @@ -47,6 +56,10 @@ if (RESOLVE_USE_CUDA)
target_link_libraries(resolve_matrix PUBLIC resolve_backend_cuda)
endif()

if (RESOLVE_USE_HIP)
target_link_libraries(resolve_matrix PUBLIC resolve_backend_hip)
endif()

# Link to dummy device backend if GPU support is not enabled
if (NOT RESOLVE_USE_GPU)
target_link_libraries(resolve_matrix PUBLIC resolve_backend_cpu)
Expand Down
30 changes: 15 additions & 15 deletions resolve/matrix/Coo.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -33,8 +33,8 @@ namespace ReSolve
copyData("cpu");
return this->h_row_data_;
} else {
if (memspace == "cuda") {
copyData("cuda");
if ((memspace == "cuda") || (memspace == "hip")) {
copyData(memspace);
return this->d_row_data_;
} else {
return nullptr;
Expand All @@ -48,8 +48,8 @@ namespace ReSolve
copyData("cpu");
return this->h_col_data_;
} else {
if (memspace == "cuda") {
copyData("cuda");
if ((memspace == "cuda") || (memspace == "hip")) {
copyData(memspace);
return this->d_col_data_;
} else {
return nullptr;
Expand All @@ -63,8 +63,8 @@ namespace ReSolve
copyData("cpu");
return this->h_val_data_;
} else {
if (memspace == "cuda") {
copyData("cuda");
if ((memspace == "cuda") || (memspace == "hip")) {
copyData(memspace);
return this->d_val_data_;
} else {
return nullptr;
Expand All @@ -81,9 +81,9 @@ namespace ReSolve
setNotUpdated();
int control=-1;
if ((memspaceIn == "cpu") && (memspaceOut == "cpu")){ control = 0;}
if ((memspaceIn == "cpu") && (memspaceOut == "cuda")){ control = 1;}
if ((memspaceIn == "cuda") && (memspaceOut == "cpu")){ control = 2;}
if ((memspaceIn == "cuda") && (memspaceOut == "cuda")){ control = 3;}
if ((memspaceIn == "cpu") && ((memspaceOut == "cuda") || (memspaceOut == "hip"))){ control = 1;}
if (((memspaceIn == "cuda") || (memspaceIn == "hip")) && (memspaceOut == "cpu")){ control = 2;}
if (((memspaceIn == "cuda") || (memspaceIn == "hip")) && ((memspaceOut == "cuda") || (memspaceOut == "hip"))){ control = 3;}

if (memspaceOut == "cpu") {
//check if cpu data allocated
Expand All @@ -98,7 +98,7 @@ namespace ReSolve
}
}

if (memspaceOut == "cuda") {
if ((memspaceOut == "cuda") || (memspaceOut == "hip")) {
//check if cuda data allocated
if (d_row_data_ == nullptr) {
mem_.allocateArrayOnDevice(&d_row_data_, nnz_current);
Expand All @@ -120,23 +120,23 @@ namespace ReSolve
owns_cpu_data_ = true;
owns_cpu_vals_ = true;
break;
case 2://cuda->cpu
case 2://gpu->cpu
mem_.copyArrayDeviceToHost(h_row_data_, row_data, nnz_current);
mem_.copyArrayDeviceToHost(h_col_data_, col_data, nnz_current);
mem_.copyArrayDeviceToHost(h_val_data_, val_data, nnz_current);
h_data_updated_ = true;
owns_cpu_data_ = true;
owns_cpu_vals_ = true;
break;
case 1://cpu->cuda
case 1://cpu->gpu
mem_.copyArrayHostToDevice(d_row_data_, row_data, nnz_current);
mem_.copyArrayHostToDevice(d_col_data_, col_data, nnz_current);
mem_.copyArrayHostToDevice(d_val_data_, val_data, nnz_current);
d_data_updated_ = true;
owns_gpu_data_ = true;
owns_gpu_vals_ = true;
break;
case 3://cuda->cuda
case 3://gpu->gpua
mem_.copyArrayDeviceToDevice(d_row_data_, row_data, nnz_current);
mem_.copyArrayDeviceToDevice(d_col_data_, col_data, nnz_current);
mem_.copyArrayDeviceToDevice(d_val_data_, val_data, nnz_current);
Expand Down Expand Up @@ -176,7 +176,7 @@ namespace ReSolve
return 0;
}

if (memspace == "cuda") {
if ((memspace == "cuda") || (memspace == "hip")) {
mem_.allocateArrayOnDevice(&d_row_data_, nnz_current);
mem_.allocateArrayOnDevice(&d_col_data_, nnz_current);
mem_.allocateArrayOnDevice(&d_val_data_, nnz_current);
Expand Down Expand Up @@ -215,7 +215,7 @@ namespace ReSolve
return 0;
}

if (memspaceOut == "cuda") {
if ((memspaceOut == "cuda") || (memspaceOut == "hip")) {
if ((d_data_updated_ == false) && (h_data_updated_ == true)) {
if (d_row_data_ == nullptr) {
mem_.allocateArrayOnDevice(&d_row_data_, nnz_current);
Expand Down
Loading