Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Rh/update docs #373

Merged
merged 7 commits into from
Apr 9, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
23 changes: 22 additions & 1 deletion docs/src/component_models/loads.md
Original file line number Diff line number Diff line change
Expand Up @@ -160,4 +160,25 @@ Finally, the withdrawed current from the bus is:
I_r = \left(\frac{S_\text{motor}}{S_\text{base}}\right) (i_{ds} - v_{qs} B_{sh}) \\
I_i = \left(\frac{S_\text{motor}}{S_\text{base}}\right) (i_{qs} + v_{ds} B_{sh})
\end{align*}
```
```

### Active Constant Power Load Model

The following 12-state model Active Load model that measures the AC side using a Phase-Lock-Loop (PLL) and regulates a DC voltage to supply a resistor $r_L$. This model induces a constant power load-like behavior as it tries to maintain a fixed DC voltage to supply ``P = v_\text{DC}^2 / r_L``. The model is based on [the following reference](https://www.sciencedirect.com/science/article/pii/S0142061516000740).

The complete model is given by:
```math
\begin{align}
\dot{\theta} &= \Omega_b (\omega_\text{pll} - \omega_s) \tag{4a} \\
\dot{\epsilon} &= v_\text{o}^q \tag{4b}\\
\omega_\text{pll} &= \omega^\star + k^p_\text{pll} v_\text{o}^q + k_\text{pll}^i \epsilon \tag{4c}\\
\dot{\zeta} &= v_\text{DC}^\star - v_\text{DC} \tag{4d} \\
i_\text{cv}^{d,\star} &= k_\text{DC}^p ( v_\text{DC}^\star - v_\text{DC}) + k_\text{DC}^i \zeta \tag{4e} \\
\frac{c_\text{DC}}{\Omega_b} \dot{v}_\text{DC} &= \frac{p_\text{cv}}{v_\text{DC}} - \frac{v_\text{DC}}{r_L} \tag{4f} \\
\dot{\gamma}_d &= i_\text{cv}^d - i_\text{cv}^{d,\star} \tag{4g}\\
\dot{\gamma}_q &= i_\text{cv}^q - i_\text{cv}^{q,\star} \tag{4h} \\
v_\text{cv}^{d,\star} &= k_\text{pc}( i_\text{cv}^d - i_\text{cv}^{d,\star}) + k_\text{ic} \gamma_d + \omega_\text{pll} l_f i_\text{cv}^q \tag{4i}\\
v_\text{cv}^{q,\star} &= k_\text{pc}( i_\text{cv}^q - i_\text{cv}^{q,\star}) + k_\text{ic} \gamma_q - \omega_\text{pll} l_f i_\text{cv}^d \tag{4j}
\end{align}
```
Equations (4a)--(4c) describes the PLL dynamics to lock the active load to the grid. Equations (4d)-(4e) describes the DC Voltage Controller to steer the DC voltage to ``v_\text{DC}^\star``, while equation (4f) describes the DC voltage dynamics at the capacitor assuming an ideal converter. Finally, equations (4g)--(4j) describes the dynamics of the AC Current Controller. Additionally six states are defined for the LCL filter in a similar fashion of GFM inverters.
20 changes: 10 additions & 10 deletions docs/src/component_models/machines.md
Original file line number Diff line number Diff line change
Expand Up @@ -219,12 +219,12 @@ The Sauer Pai model defines 6 differential equations as follows:
\begin{align}
\dot{\psi}_d &= \Omega_b(r_ai_d + \omega \psi_q + v_d) \tag{9a} \\
\dot{\psi}_q &= \Omega_b(r_ai_q - \omega \psi_d + v_q) \tag{9b} \\
\dot{e}_q' &= \frac{1}{T_{d0}'} \left[(-e_q' - (x_d - x_d')(i_d + \gamma_d2 * \dot{\psi}_d'') + v_f)] \tag{9c}\\
\dot{e}_q' &= \frac{1}{T_{q0}'} \left[(-e_d' + (x_q - x_q')(i_q + \gamma_q2 * \dot{\psi}_q''))] \tag{9d}\\
\dot{\psi}_d'' &= \frac{1}{T_{d0}''} \left[(-\psi_d'' + e_q' - (x_d' - x_l)*i_d)] \tag{9e} \\
\dot{\psi}_q'' &= \frac{1}{T_{q0}''} \left[(-\psi_q'' - e_d' - (x_q' - x_l)*i_q)] \tag{9f} \\
i_d &= \frac{1}{x_d''} (\gamma_d1 * e_q' - \psi_d + (1 - \gamma_d1) * \psi_d'') \tag{9g} \\
i_q &= \frac{1}{x_q''} ((-\gamma_q1 * e_d' - \psi_q + (1 - \gamma_q1) * \psi_q'') \tag{9h} \\
\dot{e}_q' &= \frac{1}{T_{d0}'} \left[(-e_q' - (x_d - x_d')(i_d + \gamma_{d2} \cdot \dot{\psi}_d'') + v_f)\right] \tag{9c}\\
\dot{e}_q' &= \frac{1}{T_{q0}'} \left[(-e_d' + (x_q - x_q')(i_q + \gamma_{q2} \cdot \dot{\psi}_q''))\right] \tag{9d}\\
\dot{\psi}_d'' &= \frac{1}{T_{d0}''} \left[(-\psi_d'' + e_q' - (x_d' - x_l)\cdot i_d)\right] \tag{9e} \\
\dot{\psi}_q'' &= \frac{1}{T_{q0}''} \left[(-\psi_q'' - e_d' - (x_q' - x_l)\cdot i_q)\right] \tag{9f} \\
i_d &= \frac{1}{x_d''} (\gamma_{d1} \cdot e_q' - \psi_d + (1 - \gamma_{d1}) * \psi_d'') \tag{9g} \\
i_q &= \frac{1}{x_q''} ((-\gamma_{q1} \cdot e_d' - \psi_q + (1 - \gamma_{q1}) \cdot \psi_q'') \tag{9h} \\
\tau_e &= \psi_d i_q - \psi_q i_d \tag{9i}
\end{align}
```
Expand All @@ -233,9 +233,9 @@ with

```math
\begin{align*}
\gamma_d1 &= \frac{x_d'' - x_l}{x_d' - x_l} \\
\gamma_q1 &= \frac{x_q'' - x_l}{x_q' - x_l} \\
\gamma_d2 &= \frac{1 - \gamma_d1}{x_d' - x_l} \\
\gamma_q2 &= \frac{1 - \gamma_q1}{x_q' - x_l}
\gamma_{d1} &= \frac{x_d'' - x_l}{x_d' - x_l} \\
\gamma_{q1} &= \frac{x_q'' - x_l}{x_q' - x_l} \\
\gamma_{d2} &= \frac{1 - \gamma_d1}{x_d' - x_l} \\
\gamma_{q2} &= \frac{1 - \gamma_q1}{x_q' - x_l}
\end{align*}
```
4 changes: 2 additions & 2 deletions docs/src/models.md
Original file line number Diff line number Diff line change
Expand Up @@ -65,7 +65,7 @@ The implementation of Synchronous generators as components uses the following st
share values across components.

```@raw html
<img src="https://github.com/nrel-sienna/PowerSystems.jl/blob/master/docs/src/assets/gen_metamodel.png?raw=true" width="75%">
<img src="https://raw.githubusercontent.com/nrel-sienna/PowerSystems.jl/main/docs/src/assets/gen_metamodel.png" width="75%">
```

## Inverter Models
Expand All @@ -84,7 +84,7 @@ components in a way that resembles current practices for synchronoues machine mo
The following figure summarizes the components of a inverter and which variables they share:

```@raw html
<img src="https://github.com/nrel-sienna/PowerSystems.jl/blob/master/docs/src/assets/inv_metamodel.png?raw=true" width="75%">
<img src="https://raw.githubusercontent.com/nrel-sienna/PowerSystems.jl/main/docs/src/assets/inv_metamodel.png" width="75%">
```

Contrary to the generator, there are many control structures that can be used to model
Expand Down
Loading