Skip to content

MikeMpapa/Sequence-Learning-Cognive-Task-EEG-Performance-Prediction

Repository files navigation

Publication

@article{Papakostas2017TowardsPT, title={Towards predicting task performance from EEG signals}, author={Michalis Papakostas and Konstantinos Tsiakas and Theodoros Giannakopoulos and Fillia Makedon}, journal={2017 IEEE International Conference on Big Data (Big Data)}, year={2017}, pages={4423-4425} }

EEG Dataset for the paper: Towards Predicting Task Performance from EEG Signals

DATA AVAILABLE @ : https://github.com/MikeMpapa/EEG-Dataset--Sequence-Learning

DATA FROMAT: userID_sessionID_roundID

Each file includes all the signals captured with the MUSE for one round:

  1. RAW EEG

  2. A,B,D,G,T Frequency Abdolute Values

  3. A,B,D,G,T Frequency Relative Values

  4. A,B,D,G,T Frequency Scores --> Relative Value Compared to the most Recent Data distribution

  5. C metric --> Concetration Value given by MUSE's digital component

  6. H metric --> Signal QUality metric

Publication

@article{Papakostas2017TowardsPT, title={Towards predicting task performance from EEG signals}, author={Michalis Papakostas and Konstantinos Tsiakas and Theodoros Giannakopoulos and Fillia Makedon}, journal={2017 IEEE International Conference on Big Data (Big Data)}, year={2017}, pages={4423-4425} }

About

A machine learning approach to process EEG signals from the sequence task provided by https://github.com/TsiakasK/sequence-learning.git

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages