@article{Papakostas2017TowardsPT, title={Towards predicting task performance from EEG signals}, author={Michalis Papakostas and Konstantinos Tsiakas and Theodoros Giannakopoulos and Fillia Makedon}, journal={2017 IEEE International Conference on Big Data (Big Data)}, year={2017}, pages={4423-4425} }
DATA AVAILABLE @ : https://github.com/MikeMpapa/EEG-Dataset--Sequence-Learning
DATA FROMAT: userID_sessionID_roundID
Each file includes all the signals captured with the MUSE for one round:
-
RAW EEG
-
A,B,D,G,T Frequency Abdolute Values
-
A,B,D,G,T Frequency Relative Values
-
A,B,D,G,T Frequency Scores --> Relative Value Compared to the most Recent Data distribution
-
C metric --> Concetration Value given by MUSE's digital component
-
H metric --> Signal QUality metric
@article{Papakostas2017TowardsPT, title={Towards predicting task performance from EEG signals}, author={Michalis Papakostas and Konstantinos Tsiakas and Theodoros Giannakopoulos and Fillia Makedon}, journal={2017 IEEE International Conference on Big Data (Big Data)}, year={2017}, pages={4423-4425} }