-
Notifications
You must be signed in to change notification settings - Fork 1
Python Plugin
Note: this plugin is experimental
New in Mapnik 2.1
This plugin allows you to write data sources in the Python programming language. This is useful if you want to rapidly prototype a plugin, perform some custom manipulation on data or if you want to bind mapnik to a datasource which is most conveniently accessed through Python.
The plugin may be used from the existing mapnik Python bindings or it can embed the Python interpreter directly allowing it to be used from C++, XML or even JavaScript.
Only the factory
parameter is required. This is of the form
[module:]callable
. If module
is present then module
will be imported and
its attribute named callable
will be used as a factory callable. If module
is omitted, then __main__
is used. Any other parameter aside from factory
or
type
will be passed directly to the callable as keyword arguments. Note that
these will always be passed as strings even if the parameter can be parsed as an
integer or floating point value.
The callable should return an object with the following required attributes:
-
envelope
- a 4-tuple giving the (minx, miny, maxx, maxy) extent of the datasource; -
data_type
- amapnik.DataType
instance giving the type of data stored in this datasource. This will usually be one ofmapnik.DataType.Vector
ormapnik.DataType.Raster
.
The following attributes are optional:
-
geometry_type
- if the dataset is a vector dataset, this is an instance ofmapnik.DataGeometryType
giving the type of geometry returned by the datasource.
The following methods must be present:
-
features(query)
- takes a single argument which is an instance ofmapnik.Query
and returns an iterable ofmapnik.Feature
instances for that query. -
features_at_point(point)
- almost never used. Takes a single argument which is an instance ofmapnik.Point
(I think) and returns an iterable of features associated with that point.
The standard mapnik
module provides a convenience class called
mapnik.PythonDatasource
which has default implementations for the required
methods and accepts the geometry type, data type and envelope as constructor
arguments. It also provides some convenience class methods which take care of
constructing features for you:
-
mapnik.PythonDatasource.wkb_features
- constructs features from well-known-binary (WKB) format geometry. Takes two keyword arguments:keys
which is a sequence of keys associated with each feature andfeatures
which is a sequence of pairs. The first element in each pair is the WKB representation of the feature and the second element is a dictionary mapping keys to values. -
mapnik.PythonDatasource.wkt_features
- constructs features from well-known-binary (WKT) format geometry. Takes two keyword arguments:keys
which is a sequence of keys associated with each feature andfeatures
which is a sequence of pairs. The first element in each pair is the WKB representation of the feature and the second element is a dictionary mapping keys to values.
-
If used directly from C++,
Py_Initialize()
must have been called before the plugin is loaded to initialise the interpreter correctly. -
When inside the interpreter the global interpreter lock is held each time a feature is fetched and so multi-threaded rendering performance may suffer. You can mitigate this by making sure that the feature iterator yields its value as quickly as possible, potentially from an in-memory buffer filled fom another process over IPC.
In XML:
<?xml version="1.0" encoding="utf-8"?>
<Map srs="+init=epsg:4326" background-color="white">
<Style name="style">
<Rule>
<PointSymbolizer />
<TextSymbolizer name="[label]" face_name="DejaVu Sans Book" size="10" dx="5" dy="5"/>
</Rule>
</Style>
<Layer name="test" srs="+init=epsg:4326">
<StyleName>style</StyleName>
<Datasource>
<Parameter name="type">python</Parameter>
<Parameter name="factory">test:TestDatasource</Parameter>
</Datasource>
</Layer>
</Map>
In Python using the shapely geometry library:
import mapnik
from shapely.geometry import *
class TestDatasource(mapnik.PythonDatasource):
def __init__(self):
super(TestDatasource, self).__init__()
def features(self, query):
return mapnik.PythonDatasource.wkb_features(
keys = ('label',),
features = (
( Point(5,6).wkb, { 'label': 'foo-bar'} ),
( Point(100,60).wkb, { 'label': 'buzz-quux'} ),
)
)
if __name__ == '__main__':
m = mapnik.Map(1280,1024)
m.background = mapnik.Color('white')
s = mapnik.Style()
r = mapnik.Rule()
r.symbols.append(mapnik.PointSymbolizer())
t = mapnik.TextSymbolizer(mapnik.Expression("[label]"),"DejaVu Sans Book",10,mapnik.Color('black'))
t.displacement = (5,5)
r.symbols.append(t)
s.rules.append(r)
m.append_style('point_style',s)
ds = mapnik.Python(factory='TestDatasource')
layer = mapnik.Layer('python')
layer.datasource = ds
layer.styles.append('point_style')
m.layers.append(layer)
m.zoom_all()
mapnik.render_to_file(m,'map.png', 'png')
A more complex Python example which makes use of iterators to generate geometry dynamically:
"""A more complex example which renders an infinite series of concentric
circles centred on a point.
The circles are represented by a Python iterator which will yield only the
circles which intersect the query's bounding box. The advantage of this
approach over a MemoryDatasource is that a) only those circles which intersect
the viewport are actually generated and b) only the memory for the largest
circle need be available since each circle is created on demand and destroyed
when finished with.
"""
import math
import mapnik
from shapely.geometry import *
def box2d_to_shapely(box):
import shapely.geometry
return shapely.geometry.box(box.minx, box.miny, box.maxx, box.maxy)
class ConcentricCircles(object):
def __init__(self, centre, bounds, step=1):
self.centre = centre
self.bounds = bounds
self.step = step
class Iterator(object):
def __init__(self, container):
self.container = container
centre = self.container.centre
bounds = self.container.bounds
step = self.container.step
if centre.within(bounds):
self.radius = step
else:
self.radius = math.ceil(centre.distance(bounds) / float(step)) * step
def next(self):
circle = self.container.centre.buffer(self.radius)
self.radius += self.container.step
# has the circle grown so large that the boundary is entirely within it?
if circle.contains(self.container.bounds):
raise StopIteration()
return ( circle.wkb, { } )
def __iter__(self):
return ConcentricCircles.Iterator(self)
class CirclesDatasource(mapnik.PythonDatasource):
def __init__(self, centre_x=-20, centre_y=0, step=10):
super(CirclesDatasource, self).__init__(
geometry_type=mapnik.DataGeometryType.Polygon
)
# note that the plugin loader will set all arguments to strings and will not try to parse them
centre_x = int(centre_x)
centre_y = int(centre_y)
step = int(step)
self.centre_x = centre_x
self.centre_y = centre_y
self.step = step
def features(self, query):
# Get the query bounding-box as a shapely bounding box
bounding_box = box2d_to_shapely(query.bbox)
centre = Point(self.centre_x, self.centre_y)
return mapnik.PythonDatasource.wkb_features(
keys = (),
features = ConcentricCircles(centre, bounding_box, self.step)
)
if __name__ == '__main__':
m = mapnik.Map(640, 320)
m.background = mapnik.Color('white')
s = mapnik.Style()
r = mapnik.Rule()
r.symbols.append(mapnik.LineSymbolizer())
s.rules.append(r)
m.append_style('point_style',s)
ds = mapnik.Python(factory='CirclesDatasource', centre_x='4', centre_y='50')
layer = mapnik.Layer('python')
layer.datasource = ds
layer.styles.append('point_style')
m.layers.append(layer)
box = mapnik.Box2d(-60, -60, 0, -30)
m.zoom_to_box(box)
mapnik.render_to_file(m,'map.png', 'png')