forked from anindex/mpot
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request anindex#1 from anindex/interface_tr
Porting to torch_robotics
- Loading branch information
Showing
18 changed files
with
966 additions
and
425 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,29 +1,72 @@ | ||
# mpot | ||
|
||
|
||
# Accelerating Motion Planning via Optimal Transport | ||
|
||
This repository implements Motion Planning via Optimal Transport `mpot` in PyTorch. | ||
The philosophy of `mpot` follows Monte Carlo methods' argument, i.e., more samples could discover more better modes with high enough initialization variances. | ||
In other words, `mpot` enables better **brute-force** planning with GPU vectorization, for robustness against bad local minima, which is common in optimization-based motion planning. | ||
|
||
![Point-mass with three goals](demos/planar.gif) | ||
|
||
|
||
## Installation | ||
|
||
Simply install this repos by | ||
Simply install `mpot` by | ||
|
||
```azure | ||
pip install -e . | ||
``` | ||
|
||
`mpot` algorithm is specifically designed to work with GPU. Please check if you have installed PyTorch with the CUDA option. | ||
|
||
## Examples | ||
|
||
For the demo of paralleled planning in planar environment with 3 goals and 33 plans each (99 plans): | ||
Please find in `examples/` folder the demo of vectorized planning in planar environments with occupancy map: | ||
|
||
```azure | ||
python examples/mpot_planar.py | ||
``` | ||
|
||
Please find in `data/planar/` for the result in GIF. | ||
and with signed-distance-field (SDF): | ||
|
||
```azure | ||
python examples/mpot_sdf.py | ||
``` | ||
|
||
We also added a demo with vectorized Panda planning with dense obstacle environments with SDF: | ||
|
||
```azure | ||
python examples/mpot_panda.py | ||
``` | ||
|
||
The resulting optimization visualizations are stored at your current directory. | ||
Please refer to the example scripts for playing around with options and different goal points. Note that for all cases, we normalize the joint space to the joint limits and velocity limits, then perform Sinkhorn Step on the normalized state-space. Changing any hyperparameters may require tuning again. | ||
|
||
See `examples/mpot_planar.py` for playing around with options and different goal points. Note that changing any parameters may require tuning again. | ||
We tested the script on RTX 3080Ti GPU, with planning time 0.2-0.3 seconds. | ||
**Tuning Tips**: The most sensitive parameters are: | ||
|
||
- `polytope`: for small state-dimension that is less than 20, `cube` or `orthoplex` are good choices. For much higer state-dimension, the only choice is `simplex`. | ||
- `step_radius`: the step size | ||
- `probe_radius`: the probing radius, which projects towards polytope vertices to compute cost-to-go. Note, `probe_radius` >= `step_radius`. | ||
- `num_probe`: number of probing points along the probe radius. This is critical for optimizing performance, usually 3-5 is enough. | ||
- `epsilon`: decay rate of the step/probe size, usually 0.01-0.05. | ||
- `ent_epsilon`: Sinkhorn entropy regularization, usually 1e-2 to 5e-2 for balancing between sharpness and speed. | ||
- Various cost term weightings. This depends on your applications. | ||
|
||
## Troubleshooting | ||
|
||
If you encounter memory problems, try: | ||
|
||
```azure | ||
export 'PYTORCH_CUDA_ALLOC_CONF=max_split_size_mb:512' | ||
``` | ||
|
||
to reduce memory fragmentation. | ||
|
||
## Citation | ||
|
||
If you found this repository useful, please consider citing these references: | ||
|
||
```azure | ||
@inproceedings{le2023accelerating, | ||
title={Accelerating Motion Planning via Optimal Transport}, | ||
author={Le, An T. and Chalvatzaki, Georgia and Biess, Armin and Peters, Jan}, | ||
booktitle={Advances in Neural Information Processing Systems (NeurIPS)}, | ||
year={2023} | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,182 @@ | ||
import os | ||
from pathlib import Path | ||
import time | ||
import matplotlib.pyplot as plt | ||
import torch | ||
from einops._torch_specific import allow_ops_in_compiled_graph # requires einops>=0.6.1 | ||
|
||
from mpot.ot.problem import Epsilon | ||
from mpot.ot.sinkhorn import Sinkhorn | ||
from mpot.planner import MPOT | ||
from mpot.costs import CostGPHolonomic, CostField, CostComposite | ||
from mpot.envs.occupancy import EnvOccupancy2D | ||
from mpot.utils.trajectory import interpolate_trajectory | ||
|
||
from torch_robotics.robots.robot_point_mass import RobotPointMass | ||
from torch_robotics.torch_utils.seed import fix_random_seed | ||
from torch_robotics.torch_utils.torch_timer import TimerCUDA | ||
from torch_robotics.torch_utils.torch_utils import get_torch_device | ||
from torch_robotics.tasks.tasks import PlanningTask | ||
from torch_robotics.visualizers.planning_visualizer import PlanningVisualizer | ||
|
||
allow_ops_in_compiled_graph() | ||
|
||
|
||
if __name__ == "__main__": | ||
seed = int(time.time()) | ||
fix_random_seed(seed) | ||
|
||
device = get_torch_device() | ||
tensor_args = {'device': device, 'dtype': torch.float32} | ||
|
||
# ---------------------------- Environment, Robot, PlanningTask --------------------------------- | ||
q_limits = torch.tensor([[-10, -10], [10, 10]], **tensor_args) | ||
env = EnvOccupancy2D( | ||
precompute_sdf_obj_fixed=False, | ||
tensor_args=tensor_args | ||
) | ||
|
||
robot = RobotPointMass( | ||
q_limits=q_limits, # joint limits | ||
tensor_args=tensor_args | ||
) | ||
|
||
task = PlanningTask( | ||
env=env, | ||
robot=robot, | ||
ws_limits=q_limits, # workspace limits | ||
obstacle_cutoff_margin=0.05, | ||
tensor_args=tensor_args | ||
) | ||
|
||
# -------------------------------- Params --------------------------------- | ||
# NOTE: these parameters are tuned for this environment | ||
step_radius = 0.15 | ||
probe_radius = 0.15 # probe radius >= step radius | ||
|
||
# NOTE: changing polytope may require tuning again | ||
polytope = 'cube' # 'simplex' | 'orthoplex' | 'cube'; | ||
|
||
epsilon = 0.01 | ||
ent_epsilon = Epsilon(1e-2) | ||
num_probe = 5 # number of probes points for each polytope vertices | ||
num_particles_per_goal = 33 # number of plans per goal | ||
pos_limits = [-10, 10] | ||
vel_limits = [-10, 10] | ||
w_coll = 5e-3 # for tuning the obstacle cost | ||
w_smooth = 1e-7 # for tuning the GP cost: error = w_smooth * || Phi x(t) - x(1+1) ||^2 | ||
sigma_gp = 0.1 # for tuning the GP cost: Q_c = sigma_gp^2 * I | ||
sigma_gp_init = 1.6 # for controlling the initial GP variance: Q0_c = sigma_gp_init^2 * I | ||
max_inner_iters = 100 # max inner iterations for Sinkhorn-Knopp | ||
max_outer_iters = 100 # max outer iterations for MPOT | ||
|
||
start_state = torch.tensor([-9, -9, 0., 0.], **tensor_args) | ||
|
||
# NOTE: change goal states here (zero vel goals) | ||
multi_goal_states = torch.tensor([ | ||
[0, 9, 0., 0.], | ||
[9, 9, 0., 0.], | ||
[9, 0, 0., 0.] | ||
], **tensor_args) | ||
|
||
traj_len = 64 | ||
dt = 0.1 | ||
|
||
#--------------------------------- Cost function --------------------------------- | ||
|
||
cost_coll = CostField( | ||
robot, traj_len, | ||
field=env.occupancy_map, | ||
sigma_coll=1.0, | ||
tensor_args=tensor_args | ||
) | ||
cost_gp = CostGPHolonomic(robot, traj_len, dt, sigma_gp, [0, 1], weight=w_smooth, tensor_args=tensor_args) | ||
cost_func_list = [cost_coll, cost_gp] | ||
weights_cost_l = [w_coll, w_smooth] | ||
cost = CostComposite( | ||
robot, traj_len, cost_func_list, | ||
weights_cost_l=weights_cost_l, | ||
tensor_args=tensor_args | ||
) | ||
|
||
#--------------------------------- MPOT Init --------------------------------- | ||
|
||
linear_ot_solver = Sinkhorn( | ||
threshold=1e-6, | ||
inner_iterations=1, | ||
max_iterations=max_inner_iters, | ||
) | ||
ss_params = dict( | ||
epsilon=epsilon, | ||
ent_epsilon=ent_epsilon, | ||
step_radius=step_radius, | ||
probe_radius=probe_radius, | ||
num_probe=num_probe, | ||
min_iterations=5, | ||
max_iterations=max_outer_iters, | ||
threshold=2e-3, | ||
store_history=True, | ||
tensor_args=tensor_args, | ||
) | ||
|
||
mpot_params = dict( | ||
objective_fn=cost, | ||
linear_ot_solver=linear_ot_solver, | ||
ss_params=ss_params, | ||
dim=2, | ||
traj_len=traj_len, | ||
num_particles_per_goal=num_particles_per_goal, | ||
dt=dt, | ||
start_state=start_state, | ||
multi_goal_states=multi_goal_states, | ||
pos_limits=pos_limits, | ||
vel_limits=vel_limits, | ||
polytope=polytope, | ||
fixed_goal=True, | ||
sigma_start_init=0.001, | ||
sigma_goal_init=0.001, | ||
sigma_gp_init=sigma_gp_init, | ||
seed=seed, | ||
tensor_args=tensor_args, | ||
) | ||
planner = MPOT(**mpot_params) | ||
|
||
#--------------------------------- Optimize --------------------------------- | ||
|
||
with TimerCUDA() as t: | ||
trajs, optim_state, opt_iters = planner.optimize() | ||
int_trajs = interpolate_trajectory(trajs, num_interpolation=3) | ||
colls = env.occupancy_map.get_collisions(int_trajs[..., :2]).any(dim=1) | ||
sinkhorn_iters = optim_state.linear_convergence[:opt_iters] | ||
print(f'Optimization finished at {opt_iters}! Parallelization Quality (GOOD [%]): {(1 - colls.float().mean()) * 100:.2f}') | ||
print(f'Time(s) optim: {t.elapsed} sec') | ||
print(f'Average Sinkhorn Iterations: {sinkhorn_iters.mean():.2f}, min: {sinkhorn_iters.min():.2f}, max: {sinkhorn_iters.max():.2f}') | ||
|
||
# -------------------------------- Visualize --------------------------------- | ||
planner_visualizer = PlanningVisualizer( | ||
task=task, | ||
planner=planner | ||
) | ||
|
||
traj_history = optim_state.X_history[:opt_iters] | ||
traj_history = traj_history.view(opt_iters, -1, traj_len, 4) | ||
base_file_name = Path(os.path.basename(__file__)).stem | ||
pos_trajs_iters = robot.get_position(traj_history) | ||
|
||
planner_visualizer.animate_opt_iters_joint_space_state( | ||
trajs=traj_history, | ||
pos_start_state=start_state, | ||
vel_start_state=torch.zeros_like(start_state), | ||
video_filepath=f'{base_file_name}-joint-space-opt-iters.mp4', | ||
n_frames=max((2, opt_iters // 5)), | ||
anim_time=5 | ||
) | ||
|
||
planner_visualizer.animate_opt_iters_robots( | ||
trajs=pos_trajs_iters, start_state=start_state, | ||
video_filepath=f'{base_file_name}-traj-opt-iters.mp4', | ||
n_frames=max((2, opt_iters // 5)), | ||
anim_time=5 | ||
) | ||
|
||
plt.show() |
Oops, something went wrong.