Skip to content

Commit

Permalink
Finalize
Browse files Browse the repository at this point in the history
Signed-off-by: An Thai Le <[email protected]>
  • Loading branch information
anindex committed Oct 16, 2023
1 parent b2bd25f commit 7c6b5dc
Show file tree
Hide file tree
Showing 18 changed files with 966 additions and 425 deletions.
61 changes: 52 additions & 9 deletions README.md
Original file line number Diff line number Diff line change
@@ -1,29 +1,72 @@
# mpot


# Accelerating Motion Planning via Optimal Transport

This repository implements Motion Planning via Optimal Transport `mpot` in PyTorch.
The philosophy of `mpot` follows Monte Carlo methods' argument, i.e., more samples could discover more better modes with high enough initialization variances.
In other words, `mpot` enables better **brute-force** planning with GPU vectorization, for robustness against bad local minima, which is common in optimization-based motion planning.

![Point-mass with three goals](demos/planar.gif)


## Installation

Simply install this repos by
Simply install `mpot` by

```azure
pip install -e .
```

`mpot` algorithm is specifically designed to work with GPU. Please check if you have installed PyTorch with the CUDA option.

## Examples

For the demo of paralleled planning in planar environment with 3 goals and 33 plans each (99 plans):
Please find in `examples/` folder the demo of vectorized planning in planar environments with occupancy map:

```azure
python examples/mpot_planar.py
```

Please find in `data/planar/` for the result in GIF.
and with signed-distance-field (SDF):

```azure
python examples/mpot_sdf.py
```

We also added a demo with vectorized Panda planning with dense obstacle environments with SDF:

```azure
python examples/mpot_panda.py
```

The resulting optimization visualizations are stored at your current directory.
Please refer to the example scripts for playing around with options and different goal points. Note that for all cases, we normalize the joint space to the joint limits and velocity limits, then perform Sinkhorn Step on the normalized state-space. Changing any hyperparameters may require tuning again.

See `examples/mpot_planar.py` for playing around with options and different goal points. Note that changing any parameters may require tuning again.
We tested the script on RTX 3080Ti GPU, with planning time 0.2-0.3 seconds.
**Tuning Tips**: The most sensitive parameters are:

- `polytope`: for small state-dimension that is less than 20, `cube` or `orthoplex` are good choices. For much higer state-dimension, the only choice is `simplex`.
- `step_radius`: the step size
- `probe_radius`: the probing radius, which projects towards polytope vertices to compute cost-to-go. Note, `probe_radius` >= `step_radius`.
- `num_probe`: number of probing points along the probe radius. This is critical for optimizing performance, usually 3-5 is enough.
- `epsilon`: decay rate of the step/probe size, usually 0.01-0.05.
- `ent_epsilon`: Sinkhorn entropy regularization, usually 1e-2 to 5e-2 for balancing between sharpness and speed.
- Various cost term weightings. This depends on your applications.

## Troubleshooting

If you encounter memory problems, try:

```azure
export 'PYTORCH_CUDA_ALLOC_CONF=max_split_size_mb:512'
```

to reduce memory fragmentation.

## Citation

If you found this repository useful, please consider citing these references:

```azure
@inproceedings{le2023accelerating,
title={Accelerating Motion Planning via Optimal Transport},
author={Le, An T. and Chalvatzaki, Georgia and Biess, Armin and Peters, Jan},
booktitle={Advances in Neural Information Processing Systems (NeurIPS)},
year={2023}
}
182 changes: 182 additions & 0 deletions examples/mpot_occupancy.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,182 @@
import os
from pathlib import Path
import time
import matplotlib.pyplot as plt
import torch
from einops._torch_specific import allow_ops_in_compiled_graph # requires einops>=0.6.1

from mpot.ot.problem import Epsilon
from mpot.ot.sinkhorn import Sinkhorn
from mpot.planner import MPOT
from mpot.costs import CostGPHolonomic, CostField, CostComposite
from mpot.envs.occupancy import EnvOccupancy2D
from mpot.utils.trajectory import interpolate_trajectory

from torch_robotics.robots.robot_point_mass import RobotPointMass
from torch_robotics.torch_utils.seed import fix_random_seed
from torch_robotics.torch_utils.torch_timer import TimerCUDA
from torch_robotics.torch_utils.torch_utils import get_torch_device
from torch_robotics.tasks.tasks import PlanningTask
from torch_robotics.visualizers.planning_visualizer import PlanningVisualizer

allow_ops_in_compiled_graph()


if __name__ == "__main__":
seed = int(time.time())
fix_random_seed(seed)

device = get_torch_device()
tensor_args = {'device': device, 'dtype': torch.float32}

# ---------------------------- Environment, Robot, PlanningTask ---------------------------------
q_limits = torch.tensor([[-10, -10], [10, 10]], **tensor_args)
env = EnvOccupancy2D(
precompute_sdf_obj_fixed=False,
tensor_args=tensor_args
)

robot = RobotPointMass(
q_limits=q_limits, # joint limits
tensor_args=tensor_args
)

task = PlanningTask(
env=env,
robot=robot,
ws_limits=q_limits, # workspace limits
obstacle_cutoff_margin=0.05,
tensor_args=tensor_args
)

# -------------------------------- Params ---------------------------------
# NOTE: these parameters are tuned for this environment
step_radius = 0.15
probe_radius = 0.15 # probe radius >= step radius

# NOTE: changing polytope may require tuning again
polytope = 'cube' # 'simplex' | 'orthoplex' | 'cube';

epsilon = 0.01
ent_epsilon = Epsilon(1e-2)
num_probe = 5 # number of probes points for each polytope vertices
num_particles_per_goal = 33 # number of plans per goal
pos_limits = [-10, 10]
vel_limits = [-10, 10]
w_coll = 5e-3 # for tuning the obstacle cost
w_smooth = 1e-7 # for tuning the GP cost: error = w_smooth * || Phi x(t) - x(1+1) ||^2
sigma_gp = 0.1 # for tuning the GP cost: Q_c = sigma_gp^2 * I
sigma_gp_init = 1.6 # for controlling the initial GP variance: Q0_c = sigma_gp_init^2 * I
max_inner_iters = 100 # max inner iterations for Sinkhorn-Knopp
max_outer_iters = 100 # max outer iterations for MPOT

start_state = torch.tensor([-9, -9, 0., 0.], **tensor_args)

# NOTE: change goal states here (zero vel goals)
multi_goal_states = torch.tensor([
[0, 9, 0., 0.],
[9, 9, 0., 0.],
[9, 0, 0., 0.]
], **tensor_args)

traj_len = 64
dt = 0.1

#--------------------------------- Cost function ---------------------------------

cost_coll = CostField(
robot, traj_len,
field=env.occupancy_map,
sigma_coll=1.0,
tensor_args=tensor_args
)
cost_gp = CostGPHolonomic(robot, traj_len, dt, sigma_gp, [0, 1], weight=w_smooth, tensor_args=tensor_args)
cost_func_list = [cost_coll, cost_gp]
weights_cost_l = [w_coll, w_smooth]
cost = CostComposite(
robot, traj_len, cost_func_list,
weights_cost_l=weights_cost_l,
tensor_args=tensor_args
)

#--------------------------------- MPOT Init ---------------------------------

linear_ot_solver = Sinkhorn(
threshold=1e-6,
inner_iterations=1,
max_iterations=max_inner_iters,
)
ss_params = dict(
epsilon=epsilon,
ent_epsilon=ent_epsilon,
step_radius=step_radius,
probe_radius=probe_radius,
num_probe=num_probe,
min_iterations=5,
max_iterations=max_outer_iters,
threshold=2e-3,
store_history=True,
tensor_args=tensor_args,
)

mpot_params = dict(
objective_fn=cost,
linear_ot_solver=linear_ot_solver,
ss_params=ss_params,
dim=2,
traj_len=traj_len,
num_particles_per_goal=num_particles_per_goal,
dt=dt,
start_state=start_state,
multi_goal_states=multi_goal_states,
pos_limits=pos_limits,
vel_limits=vel_limits,
polytope=polytope,
fixed_goal=True,
sigma_start_init=0.001,
sigma_goal_init=0.001,
sigma_gp_init=sigma_gp_init,
seed=seed,
tensor_args=tensor_args,
)
planner = MPOT(**mpot_params)

#--------------------------------- Optimize ---------------------------------

with TimerCUDA() as t:
trajs, optim_state, opt_iters = planner.optimize()
int_trajs = interpolate_trajectory(trajs, num_interpolation=3)
colls = env.occupancy_map.get_collisions(int_trajs[..., :2]).any(dim=1)
sinkhorn_iters = optim_state.linear_convergence[:opt_iters]
print(f'Optimization finished at {opt_iters}! Parallelization Quality (GOOD [%]): {(1 - colls.float().mean()) * 100:.2f}')
print(f'Time(s) optim: {t.elapsed} sec')
print(f'Average Sinkhorn Iterations: {sinkhorn_iters.mean():.2f}, min: {sinkhorn_iters.min():.2f}, max: {sinkhorn_iters.max():.2f}')

# -------------------------------- Visualize ---------------------------------
planner_visualizer = PlanningVisualizer(
task=task,
planner=planner
)

traj_history = optim_state.X_history[:opt_iters]
traj_history = traj_history.view(opt_iters, -1, traj_len, 4)
base_file_name = Path(os.path.basename(__file__)).stem
pos_trajs_iters = robot.get_position(traj_history)

planner_visualizer.animate_opt_iters_joint_space_state(
trajs=traj_history,
pos_start_state=start_state,
vel_start_state=torch.zeros_like(start_state),
video_filepath=f'{base_file_name}-joint-space-opt-iters.mp4',
n_frames=max((2, opt_iters // 5)),
anim_time=5
)

planner_visualizer.animate_opt_iters_robots(
trajs=pos_trajs_iters, start_state=start_state,
video_filepath=f'{base_file_name}-traj-opt-iters.mp4',
n_frames=max((2, opt_iters // 5)),
anim_time=5
)

plt.show()
Loading

0 comments on commit 7c6b5dc

Please sign in to comment.