-
Notifications
You must be signed in to change notification settings - Fork 1
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Lane Follower Systems into dev #211
base: dev
Are you sure you want to change the base?
Changes from 4 commits
a9212b8
f8c5ad7
d0b6223
187bd1b
8c363c8
473134b
550aeec
c7d7692
a4a018f
20d1e0b
e5fd3d1
d0c80ed
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
@@ -0,0 +1,172 @@ | ||||||||||||
# Lane Follower for a single camera | ||||||||||||
# Applies a perspective transform to an image, and isolates lane lines | ||||||||||||
import numpy as np | ||||||||||||
import math | ||||||||||||
import cv2 | ||||||||||||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Imports should be sorted alphabetically and have whitespace between a standard lib imports and 3rd-party improts. They should also come before 3rd-party imports. There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Used isort |
||||||||||||
|
||||||||||||
|
||||||||||||
class IndividualFollower: | ||||||||||||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more.
Suggested change
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Not making this change as lane follower is an overarching class that creates 2 individual followers; one for each camera. |
||||||||||||
# Constants for how we process images | ||||||||||||
# These should be parametrized and better defined at a later date: as part of testing | ||||||||||||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more.
Suggested change
|
||||||||||||
NWINDOWS = 9 | ||||||||||||
SEARCH_WIDTH = 100 | ||||||||||||
MINPIXELS = 40 | ||||||||||||
LANE_POLY_SIZE = 2 | ||||||||||||
|
||||||||||||
# Rendering Parameters | ||||||||||||
BOX_COLOR = (0, 255, 0) | ||||||||||||
LANE_COLOR = (255, 0, 0) | ||||||||||||
|
||||||||||||
DRAW_THICKNESS = 2 | ||||||||||||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. I would make a configuration dataclass so that we can easily pass them to a lane-follower. I would also give them the same defaults. There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Created a .toml |
||||||||||||
|
||||||||||||
def __init__(self): | ||||||||||||
# self.fit is set in Plot_Line | ||||||||||||
self.fit = None | ||||||||||||
# These two are set below | ||||||||||||
self._binary_warped = None | ||||||||||||
self.histogram = None | ||||||||||||
|
||||||||||||
# Need to determine if these should remain properties | ||||||||||||
# Or if they should be passed as arguments to Plot_Line | ||||||||||||
@property | ||||||||||||
def _binary_warped(self, value: np.ndarray): | ||||||||||||
Comment on lines
+30
to
+33
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more.
|
||||||||||||
self._binary_warped = value | ||||||||||||
self.histogram = np.sum( | ||||||||||||
self.binary_warped[self.binary_warped.shape[0] // 2 :, :], axis=0 | ||||||||||||
) | ||||||||||||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. I'm not sure I follow why you're making this a property? If this is a getter, shouldn't it be a public member? |
||||||||||||
|
||||||||||||
def plot_line(self): | ||||||||||||
Vaibhav-Hariani marked this conversation as resolved.
Show resolved
Hide resolved
|
||||||||||||
|
||||||||||||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more.
Suggested change
|
||||||||||||
if self.binary_warped is None: | ||||||||||||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more.
Suggested change
|
||||||||||||
raise Exception("no binary warp specified") | ||||||||||||
|
||||||||||||
# Image to visualize output | ||||||||||||
out_img = ( | ||||||||||||
np.dstack( | ||||||||||||
(self._binary_warped, self._binary_warped, self._binary_warped) | ||||||||||||
) | ||||||||||||
* 255 | ||||||||||||
) | ||||||||||||
Vaibhav-Hariani marked this conversation as resolved.
Show resolved
Hide resolved
|
||||||||||||
|
||||||||||||
window_height = np.int32( | ||||||||||||
self._binary_warped.shape[0] / IndividualFollower.NWINDOWS | ||||||||||||
) | ||||||||||||
|
||||||||||||
lane_inds = [] | ||||||||||||
|
||||||||||||
nonzero_pixels = self._binary_warped.nonzero() | ||||||||||||
nonzero_y = np.array(nonzero_pixels[0]) | ||||||||||||
nonzero_x = np.array(nonzero_pixels[1]) | ||||||||||||
|
||||||||||||
empty_windows = 0 | ||||||||||||
lane_base = np.argmax(self.histogram[:]) | ||||||||||||
for window in range(IndividualFollower.NWINDOWS): | ||||||||||||
window_dims = window * window_height | ||||||||||||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. If you went through the effort of making |
||||||||||||
win_y_upper = self._binary_warped.shape[0] - window_dims | ||||||||||||
# One window height lower than win_y_higher | ||||||||||||
win_y_lower = win_y_upper - window_height | ||||||||||||
win_x_lower = lane_base - IndividualFollower.SEARCH_WIDTH | ||||||||||||
win_x_upper = lane_base + IndividualFollower.SEARCH_WIDTH | ||||||||||||
|
||||||||||||
lower_coords = (win_x_lower, win_y_lower) | ||||||||||||
upper_coords = (win_x_upper, win_y_lower) | ||||||||||||
cv2.rectangle( | ||||||||||||
Comment on lines
+73
to
+74
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more.
Suggested change
|
||||||||||||
out_img, | ||||||||||||
lower_coords, | ||||||||||||
upper_coords, | ||||||||||||
IndividualFollower.BOX_COLOR, | ||||||||||||
IndividualFollower.DRAW_THICKNESS, | ||||||||||||
) | ||||||||||||
|
||||||||||||
white_pix_inds = ( | ||||||||||||
(nonzero_y >= win_y_lower) | ||||||||||||
& (nonzero_y < win_y_upper) | ||||||||||||
& (nonzero_x >= win_x_lower) | ||||||||||||
& (nonzero_x >= win_x_upper) | ||||||||||||
).nonzero_pixels()[0] | ||||||||||||
|
||||||||||||
# This should likely be moved into the if statement: leaving for now | ||||||||||||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. For stuff like this, turn it into a Python warning so that we don't forget about it. |
||||||||||||
lane_inds.append(white_pix_inds) | ||||||||||||
if len(white_pix_inds) > IndividualFollower.MINPIXELS: | ||||||||||||
# np.mean will return a float: We need an exact value | ||||||||||||
lane_base = np.int32(np.mean(nonzero_x[white_pix_inds])) | ||||||||||||
Comment on lines
+92
to
+93
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more.
Suggested change
|
||||||||||||
else: | ||||||||||||
empty_windows += 1 | ||||||||||||
|
||||||||||||
if len(lane_inds) == 0: | ||||||||||||
return None, 0, 0, 0 | ||||||||||||
lane_array = np.concatenate(lane_inds) | ||||||||||||
lane_x_pos = nonzero_x[lane_array] | ||||||||||||
lane_y_pos = nonzero_y[lane_array] | ||||||||||||
|
||||||||||||
# I don't believe this if statement is necessary, need to test | ||||||||||||
if lane_x_pos.any() and lane_y_pos.any(): | ||||||||||||
self._fit = np.polyfit( | ||||||||||||
lane_y_pos, lane_x_pos, IndividualFollower.LANE_POLY_SIZE | ||||||||||||
) | ||||||||||||
|
||||||||||||
plotting_coordinates = np.linspace( | ||||||||||||
0, | ||||||||||||
self._binary_warped.shape[0] - 1, | ||||||||||||
self._binary_warped.shape[1], | ||||||||||||
) | ||||||||||||
|
||||||||||||
polynomial = np.polyval(self._fit, plotting_coordinates) | ||||||||||||
out_img[nonzero_y[lane_array], nonzero_x[lane_array]] = ( | ||||||||||||
IndividualFollower.LANE_COLOR | ||||||||||||
) | ||||||||||||
|
||||||||||||
##Generates the search window area | ||||||||||||
window_img = np.zeros_like(out_img) | ||||||||||||
##These lines should be broken up accordingly: They render the search area | ||||||||||||
line_window1 = np.array( | ||||||||||||
[ | ||||||||||||
np.transpose( | ||||||||||||
np.vstack( | ||||||||||||
[ | ||||||||||||
polynomial - IndividualFollower.SEARCH_WIDTH, | ||||||||||||
plotting_coordinates, | ||||||||||||
] | ||||||||||||
) | ||||||||||||
) | ||||||||||||
] | ||||||||||||
) | ||||||||||||
line_window2 = np.array( | ||||||||||||
[ | ||||||||||||
np.transpose( | ||||||||||||
np.vstack( | ||||||||||||
[ | ||||||||||||
polynomial + IndividualFollower.SEARCH_WIDTH, | ||||||||||||
plotting_coordinates, | ||||||||||||
] | ||||||||||||
) | ||||||||||||
) | ||||||||||||
] | ||||||||||||
) | ||||||||||||
line_pts = np.hstack((line_window1, line_window2)) | ||||||||||||
cv2.fillPoly( | ||||||||||||
window_img, np.int_([line_pts]), color=IndividualFollower.BOX_COLOR | ||||||||||||
) | ||||||||||||
line_pts = np.array( | ||||||||||||
[np.transpose(np.vstack([polynomial, plotting_coordinates]))], | ||||||||||||
dtype=np.int32, | ||||||||||||
) | ||||||||||||
cv2.polylines( | ||||||||||||
out_img, | ||||||||||||
line_pts, | ||||||||||||
isClosed=False, | ||||||||||||
color=IndividualFollower.LANE_COLOR, | ||||||||||||
thickness=IndividualFollower.DRAW_THICKNESS, | ||||||||||||
) | ||||||||||||
|
||||||||||||
# Calculating heading error by converting lane polynomial into line | ||||||||||||
##TODO: Make this use the furthest found box. This way, we'll use the most accurate heading | ||||||||||||
y_lower = 0 | ||||||||||||
y_upper = (IndividualFollower.NWINDOWS + 1) * window_height | ||||||||||||
slope = np.polyval(self.fit, y_lower) - np.polyval( | ||||||||||||
self.fit, y_upper | ||||||||||||
) / (y_upper - y_lower) | ||||||||||||
heading = math.atan(slope) | ||||||||||||
result = cv2.addWeighted(out_img, 1, window_img, 0.3, 0) | ||||||||||||
# TODO: Determine what result really is, and annotate efficiently | ||||||||||||
return result, empty_windows, heading, slope | ||||||||||||
Vaibhav-Hariani marked this conversation as resolved.
Show resolved
Hide resolved
|
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Please create a
component.toml
with this information.