Clone the repository
Project repo: https://github.com/
conda create -n medibot python=3.10 -y
conda activate medibot
pip install -r requirements.txt
PINECONE_API_KEY = "xxxxxxxxxxxxxxxxxxxxxxxxxxxxx"
OPENAI_API_KEY = "xxxxxxxxxxxxxxxxxxxxxxxxxxxxx"
# run the following command to store embeddings to pinecone
python store_index.py
# Finally run the following command
python app.py
Now,
open up localhost:
- Python
- LangChain
- Flask
- GPT
- Pinecone
#with specific access
1. EC2 access : It is virtual machine
2. ECR: Elastic Container registry to save your docker image in aws
#Description: About the deployment
1. Build docker image of the source code
2. Push your docker image to ECR
3. Launch Your EC2
4. Pull Your image from ECR in EC2
5. Lauch your docker image in EC2
#Policy:
1. AmazonEC2ContainerRegistryFullAccess
2. AmazonEC2FullAccess
- Save the URI: 970547337635.dkr.ecr.ap-south-1.amazonaws.com/medicalchatbot
#optinal
sudo apt-get update -y
sudo apt-get upgrade
#required
curl -fsSL https://get.docker.com -o get-docker.sh
sudo sh get-docker.sh
sudo usermod -aG docker ubuntu
newgrp docker
setting>actions>runner>new self hosted runner> choose os> then run command one by one
- AWS_ACCESS_KEY_ID
- AWS_SECRET_ACCESS_KEY
- AWS_DEFAULT_REGION
- ECR_REPO
- PINECONE_API_KEY
- OPENAI_API_KEY