-
Notifications
You must be signed in to change notification settings - Fork 0
/
app.py
65 lines (47 loc) · 1.7 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
from flask import Flask, render_template, jsonify, request
from src.helper import download_hugging_face_embeddings
from langchain_pinecone import PineconeVectorStore
from langchain_openai import OpenAI
from langchain.chains import create_retrieval_chain
from langchain.chains.combine_documents import create_stuff_documents_chain
from langchain_core.prompts import ChatPromptTemplate
from dotenv import load_dotenv
from src.prompt import *
import os
app = Flask(__name__)
load_dotenv()
PINECONE_API_KEY = os.environ.get('PINECONE_API_KEY')
OPENAI_API_KEY = os.environ.get('OPENAI_API_KEY')
os.environ["PINECONE_API_KEY"] = PINECONE_API_KEY
os.environ["OPENAI_API_KEY"] = OPENAI_API_KEY
embeddings = download_hugging_face_embeddings()
index_name = "medicalbot"
# Embed each chunk and upsert the embeddings into your Pinecone index.
docsearch = PineconeVectorStore.from_existing_index(
index_name=index_name,
embedding=embeddings
)
retriever = docsearch.as_retriever(
search_type="similarity", search_kwargs={"k": 3})
llm = OpenAI(temperature=0.4, max_tokens=500)
prompt = ChatPromptTemplate.from_messages(
[
("system", system_prompt),
("human", "{input}"),
]
)
question_answer_chain = create_stuff_documents_chain(llm, prompt)
rag_chain = create_retrieval_chain(retriever, question_answer_chain)
@app.route("/")
def index():
return render_template('chat.html')
@app.route("/get", methods=["GET", "POST"])
def chat():
msg = request.form["msg"]
input = msg
print(input)
response = rag_chain.invoke({"input": msg})
print("Response : ", response["answer"])
return str(response["answer"])
if __name__ == '__main__':
app.run(host="0.0.0.0", port=8080, debug=True)