Code implementation for Universal Domain Adaptive Object Detection via Dual Probabilistic Alignment (DPA)
- Ubuntu 18.04.5 LTS
- Python 3.6
- CUDA 10.0
- PyTorch 1.0.0
- Faster R-CNN
#Compile the cuda dependencies using following simple commands following [Faster R-CNN](https://github.com/jwyang/faster-rcnn.pytorch/tree/pytorch-1.0):
cd lib
python setup.py build develop
- Path:
UniDAOD-DPA/lib/model/utils
- Function:
global_alignment()
- Path:
UniDAOD-DPA/lib/model/da_faster_rcnn/
- File:
openset_weight.py
- Path:
UniDAOD-DPA/lib/model/utils
- Function: instance_alignment_private
Train the model
CUDA_VISIBLE_DEVICES=0 python -u da_train_net.py \
--max_epochs 10 --cuda --dataset voc2clipart_0.25 \
--net res101 --save_dir ./weight_model/voc2clipart_0.25 \
--pretrained_path XXXX/pretrained_model/resnet101_caffe.pth \
--gc --lc --da_use_contex --weight_consis 0.1 --lr_bound 0.1 --gmm_split 0.03
Test the well-trained model:
python test_clipart_0.25.py >> test-voc025.out
Train the model and test the well-trained model through the script:
sh train_scripts\train_voc2clipart_0.25.sh
If you have any questions , please contact me at [email protected]
@article{zheng2024universal,
title={Universal Domain Adaptive Object Detection via Dual Probabilistic Alignment},
author={Zheng, Yuanfan and Wu, Jinlin and Li, Wuyang and Chen, Zhen},
journal={arXiv preprint arXiv:2412.11443},
year={2024}
}