Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat: add Tsallis PDF #70

Merged
merged 11 commits into from
Apr 1, 2024
Merged
Show file tree
Hide file tree
Changes from 7 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions CHANGELOG.rst
Original file line number Diff line number Diff line change
Expand Up @@ -10,6 +10,7 @@ Major Features and Improvements
- added CMSShape PDF
- added Cruijff PDF
- added ErfExp PDF
- added Tsallis PDF

Breaking changes
------------------
Expand Down
75 changes: 75 additions & 0 deletions tests/test_pdf_tsallis.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,75 @@
"""Tests for CMSShape PDF."""
import numpy as np
import pytest
import tensorflow as tf
import zfit
from numba_stats import tsallis as tsallis_numba

# Important, do the imports below
from zfit.core.testing import tester

import zfit_physics as zphys

# specify globals here. Do NOT add any TensorFlow but just pure python
m_true = 90.0
t_true = 10.0
n_true = 3.0


def create_tsallis(m, t, n, limits):
obs = zfit.Space("obs1", limits)
tsallis = zphys.pdf.Tsallis(m=m, t=t, n=n, obs=obs)
return tsallis, obs


def test_tsallis_pdf():
# Test PDF here
tsallis, _ = create_tsallis(m=m_true, t=t_true, n=n_true, limits=(0, 150))
assert tsallis.pdf(90.0, norm=False).numpy().item() == pytest.approx(
tsallis_numba.pdf(90.0, m=m_true, t=t_true, n=n_true), 1e-5
)
np.testing.assert_allclose(
tsallis.pdf(tf.range(0.0, 150, 10_000), norm=False),
tsallis_numba.pdf(tf.range(0.0, 150, 10_000).numpy(), m=m_true, t=t_true, n=n_true),
rtol=1e-5,
)

sample = tsallis.sample(1000)
assert all(np.isfinite(sample.value())), "Some samples from the tsallis PDF are NaN or infinite"
assert sample.n_events == 1000
assert all(tf.logical_and(0 <= sample.value(), sample.value() <= 150))


def test_tsallis_integral():
# Test CDF and integral here
tsallis, obs = create_tsallis(m=m_true, t=t_true, n=n_true, limits=(0, 150))
full_interval_analytic = zfit.run(tsallis.analytic_integrate(obs, norm=False))
full_interval_numeric = zfit.run(tsallis.numeric_integrate(obs, norm=False))
true_integral = 0.835415
numba_stats_full_integral = tsallis_numba.cdf(150, m=m_true, t=t_true, n=n_true) - tsallis_numba.cdf(
0, m=m_true, t=t_true, n=n_true
)
assert full_interval_analytic == pytest.approx(true_integral, 1e-5)
assert full_interval_numeric == pytest.approx(true_integral, 1e-5)
assert full_interval_analytic == pytest.approx(numba_stats_full_integral, 1e-8)
assert full_interval_numeric == pytest.approx(numba_stats_full_integral, 1e-8)

analytic_integral = zfit.run(tsallis.analytic_integrate(limits=(20, 60), norm=False))
numeric_integral = zfit.run(tsallis.numeric_integrate(limits=(20, 60), norm=False))
numba_stats_integral = tsallis_numba.cdf(60, m=m_true, t=t_true, n=n_true) - tsallis_numba.cdf(
20, m=m_true, t=t_true, n=n_true
)
assert analytic_integral == pytest.approx(numeric_integral, 1e-8)
assert analytic_integral == pytest.approx(numba_stats_integral, 1e-8)


# register the pdf here and provide sets of working parameter configurations
def tsallis_params_factory():
m = zfit.Parameter("m", m_true)
t = zfit.Parameter("t", t_true)
n = zfit.Parameter("n", n_true)

return {"m": m, "t": t, "n": n}


tester.register_pdf(pdf_class=zphys.pdf.Tsallis, params_factories=tsallis_params_factory)
157 changes: 157 additions & 0 deletions zfit_physics/models/pdf_tsallis.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,157 @@
from typing import Optional

import tensorflow as tf
import zfit
import zfit.z.numpy as znp
from zfit import run, z
from zfit.core.space import ANY_LOWER, ANY_UPPER, Space
from zfit.util import ztyping


@z.function(wraps="tensor")
def tsallis_pdf_func(x, m, t, n):
"""Calculate the Tsallis PDF.

Args:
x: value(s) for which the PDF will be calculated.
m: mass of the particle.
t: width parameter.
n: absolute value of the exponent of the power law.

Returns:
`tf.Tensor`: The calculated PDF values.

Notes:
Based on code from `numba-stats <https://github.com/HDembinski/numba-stats/blob/main/src/numba_stats/tsallis.py>`_.
"""
if run.executing_eagerly():
if n <= 2:
msg = "n > 2 is required"
raise ValueError(msg)
elif run.numeric_checks:
tf.debugging.assert_greater(n, znp.asarray(2.0), message="n > 2 is required")

x = z.unstack_x(x)
mt = znp.sqrt(znp.square(m) + znp.square(x))
ikrommyd marked this conversation as resolved.
Show resolved Hide resolved
nt = n * t
c = (n - 1) * (n - 2) / (nt * (nt + (n - 2) * m))
return c * x * znp.power(1 + (mt - m) / nt, -n)


@z.function(wraps="tensor")
def tsallis_cdf_func(x, m, t, n):
"""Calculate the Tsallis CDF.

Args:
x: value(s) for which the CDF will be calculated.
m: mass of the particle.
t: width parameter.
n: absolute value of the exponent of the power law.

Returns:
`tf.Tensor`: The calculated CDF values.

Notes:
Based on code from `numba-stats <https://github.com/HDembinski/numba-stats/blob/main/src/numba_stats/tsallis.py>`_.
"""
if run.executing_eagerly():
if n <= 2:
msg = "n > 2 is required"
raise ValueError(msg)
elif run.numeric_checks:
tf.debugging.assert_greater(n, znp.asarray(2.0), message="n > 2 is required")

x = z.unstack_x(x)
mt = znp.sqrt(m * m + znp.square(x))
ikrommyd marked this conversation as resolved.
Show resolved Hide resolved
nt = n * t
return znp.power((mt - m) / nt + 1, 1 - n) * (m + mt - n * (mt + t)) / (m * (n - 2) + nt)


def tsallis_integral(limits: ztyping.SpaceType, params: dict, model) -> tf.Tensor:
"""Calculates the analytic integral of the Tsallis PDF.

Args:
limits: An object with attribute limit1d.
params: A hashmap from which the parameters that defines the PDF will be extracted.
model: Will be ignored.

Returns:
The calculated integral.
"""
lower, upper = limits._rect_limits_tf
m = params["m"]
t = params["t"]
n = params["n"]
lower_cdf = tsallis_cdf_func(x=lower, m=m, t=t, n=n)
upper_cdf = tsallis_cdf_func(x=upper, m=m, t=t, n=n)
return upper_cdf - lower_cdf


class Tsallis(zfit.pdf.BasePDF):
_N_OBS = 1

def __init__(
self,
m: ztyping.ParamTypeInput,
t: ztyping.ParamTypeInput,
n: ztyping.ParamTypeInput,
jonas-eschle marked this conversation as resolved.
Show resolved Hide resolved
obs: ztyping.ObsTypeInput,
*,
extended: Optional[ztyping.ExtendedInputType] = None,
norm: Optional[ztyping.NormInputType] = None,
name: str = "Tsallis",
):
"""Tsallis-Hagedorn PDF.

A generalisation (q-analog) of the exponential distribution based on Tsallis entropy.
It approximately describes the pT distribution charged particles produced in high-energy
minimum bias particle collisions.


Formula for the PDF and CDF are based on code from
`numba-stats <https://github.com/HDembinski/numba-stats/blob/main/src/numba_stats/tsallis.py>`_

Args:
m: Mass of the particle.
t: Width parameter.
n: Absolute value of the exponent of the power law.
obs: |@doc:pdf.init.obs| Observables of the
model. This will be used as the default space of the PDF and,
if not given explicitly, as the normalization range.

The default space is used for example in the sample method: if no
sampling limits are given, the default space is used.

The observables are not equal to the domain as it does not restrict or
truncate the model outside this range. |@docend:pdf.init.obs|
extended: |@doc:pdf.init.extended| The overall yield of the PDF.
If this is parameter-like, it will be used as the yield,
the expected number of events, and the PDF will be extended.
An extended PDF has additional functionality, such as the
``ext_*`` methods and the ``counts`` (for binned PDFs). |@docend:pdf.init.extended|
norm: |@doc:pdf.init.norm| Normalization of the PDF.
By default, this is the same as the default space of the PDF. |@docend:pdf.init.norm|
name: |@doc:pdf.init.name| Human-readable name
or label of
the PDF for better identification.
Has no programmatical functional purpose as identification. |@docend:pdf.init.name|
"""
if run.executing_eagerly():
if n <= 2:
msg = "n > 2 is required"
raise ValueError(msg)
elif run.numeric_checks:
tf.debugging.assert_greater(n, znp.asarray(2.0), message="n > 2 is required")

params = {"m": m, "t": t, "n": n}
super().__init__(obs=obs, params=params, name=name, extended=extended, norm=norm)

def _unnormalized_pdf(self, x: tf.Tensor) -> tf.Tensor:
m = self.params["m"]
t = self.params["t"]
n = self.params["n"]
return tsallis_pdf_func(x=x, m=m, t=t, n=n)


tsallis_integral_limits = Space(axes=0, limits=(ANY_LOWER, ANY_UPPER))
Tsallis.register_analytic_integral(func=tsallis_integral, limits=tsallis_integral_limits)
3 changes: 2 additions & 1 deletion zfit_physics/pdf.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,5 +3,6 @@
from .models.pdf_cruijff import Cruijff
from .models.pdf_erfexp import ErfExp
from .models.pdf_relbw import RelativisticBreitWigner
from .models.pdf_tsallis import Tsallis

__all__ = ["Argus", "RelativisticBreitWigner", "CMSShape", "Cruijff", "ErfExp"]
__all__ = ["Argus", "RelativisticBreitWigner", "CMSShape", "Cruijff", "ErfExp", "Tsallis"]
Loading