Releases: yuyi13/ubESTARFM
Unbiased ESTARFM (ubESTARFM) in R
Unbiased ESTARFM (ubESTARFM) in R
The published version.
Unbiased ESTARFM (ubESTARFM)
Fine spatial resolution land surface temperature (LST) data are crucial to study heterogeneous landscapes (e.g., agricultural and urban). Some well-known spatiotemporal fusion methods like the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM; Gao et al., 2006) and the Enhanced STARFM (ESTARFM; Zhu et al., 2010), which were originally developed to fuse surface reflectance data, may not be suitable for direct application in LST studies due to the temporal dynamics of LST. To address this, we proposed a variant of ESTARFM, referred to as the unbiased ESTARFM (ubESTARFM), specifically designed to accommodate the high temporal dynamics of LST to generate fine-resolution LST estimates.
In ubESTARFM, we implement a local bias correction on the central pixel and similar fine-resolution pixels within the moving window using the mean value of corresponding coarse-resolution pixels as reference. By applying this linear scaling approach, we can scale the systematic biases of the fine-resolution data to a same level of the corresponding coarse-resolution data in each moving window, while maintaining the variation and spatial details of fine-resolution data.