Skip to content

yuxiang-wu/gen-debiased-nli

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Generating Data to Mitigate Spurious Correlations in Natural Language Inference Datasets (GD-NLI)

This repository hosts the data and code of the paper Generating Data to Mitigate Spurious Correlations in Natural Language Inference Datasets published at ACL 2022.

diagram


Download our Generated Debiased NLI (GD-NLI) Datasets

Our synthetic debiased NLI datasets (GD-NLI) can be downloaded using the following links. All data files follow jsonline format. Each line contains a json object with the standard NLI fields premise, hypothesis, label, and a metadata field type that indicates whether the sample comes from the original dataset or is generated.

Dataset #Samples Link
All data - zip
SNLI Z-Aug 1,142,475 jsonl
SNLI Seq-Z 933,085 jsonl
SNLI Par-Z 927,906 jsonl
MNLI Z-Aug 744,326 jsonl
MNLI Seq-Z 740,811 jsonl
MNLI Par-Z 744,200 jsonl

Code and Models

Installation and setup

conda create --name gdnli python=3.7 && conda activate gdnli
git clone https://github.com/jimmycode/gen-debiased-nli
cd gen-debiased-nli
. scripts/init.sh

Download data

You can download GD-NLI datasets with the links provided above, or run the following script:

. scripts/get_data.sh

We use SNLI-hard, MNLI-hard, HANS, and an adversarial attack suite to evaluate our models. We also provide a script to download these evaluation datasets.

. scripts/get_eval_data.sh

Training with our datasets

python scripts/train_nli_synthetic.py \
  --exp_name bert-base_mnli_z-aug \
  --train_data data/gen-debiased-nli/mnli_z-aug \
  --dev_data <path to MNLI dev> --data_dir data/ \
  --model_name_or_path bert-base-uncased \
  --max_length 128 --per_device_train_batch_size 32 --per_device_eval_batch_size 16 \
  --learning_rate 1e-5 --num_train_epochs 5 --lr_scheduler_type constant_with_warmup --num_warmup_steps 2000 \
  --output_dir <your output dir> \
  --seed 42 --do_predict --do_train

Training PoE models with our datasets

python scripts/train_nli_poe.py \
  --exp_name bert-base_mnli_z-aug_poe \
  --train_data data/gen-debiased-nli/mnli_z-aug.jsonl \
  --dev_data <path to MNLI dev> --data_dir data/ \
  --model_name_or_path bert-base-uncased \
  --max_length 128 --per_device_train_batch_size 32 --per_device_eval_batch_size 16 \
  --learning_rate 2e-5 --num_train_epochs 3 --lr_scheduler_type linear --num_warmup_steps 1000 \
  --output_dir <your output dir> \
  --poe_loss --poe_alpha 2.0 --lambda_h 1.0 --nonlinear_h_classifier deep \
  --seed 42 --do_predict --do_train

Citing

Please use the following bibtex to cite our work:

@inproceedings{gen-debiased-nli-2022,
    title = "Generating Data to Mitigate Spurious Correlations in Natural Language Inference Datasets",
    author = "Wu, Yuxiang  and
      Gardner, Matt  and
      Stenetorp, Pontus  and
      Dasigi, Pradeep",
    booktitle = "Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics",
    month = may,
    year = "2022",
    publisher = "Association for Computational Linguistics",
}

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published