This repository contains code for hyperspectral image denoising using TV based regularizers. Optimisation is performed using Chambolle-Pock algorithm [1]
-
Clone the repository:
git clone https://github.com/yourusername/spectral-spatial-analysis.git cd spectral-spatial-analysis
-
Install the required dependencies:
pip install -r requirements.txt
chambolle_pock.py
: Implementation of the Chambolle-Pock algorithm.grad_alignement.py
: Implementation of denoising using a gradient alignment regularization.nabla.py
: Contains functions for computing gradients.tvprior.py
: Implementation of denoising using a Total Variation Prior.tv_plus_grad_alignement.py
: Combines Total Variation and gradient alignment.
datasets.py
: Functions for loading and processing datasets.show_dataset.ipynb
: Jupyter notebook for visualizing datasets.
metrics.py
: Functions for computing various metrics.
ACP.ipynb
: Jupyter notebook for ACP analysis.benchmark.py
: Script for benchmarking algorithms.grad_alignement.ipynb
: Jupyter notebook for denoising using a gradient alignment regularization.HyDe.ipynb
: Jupyter notebook for HyDe analysis.tv_plus_grad_alignement.ipynb
: Jupyter notebook for TV + Gradient Alignment.tvprior.ipynb
: Jupyter notebook for denoising using a TV Prior.
- Contains results from various experiments and analyses.