Skip to content

Hyperspectral Image Reconstruction Using Spectral-Spatial Regularizations

Notifications You must be signed in to change notification settings

y-mhiri/spectral-spatial

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

21 Commits
 
 
 
 
 
 

Repository files navigation

Spectral-Spatial

This repository contains code for hyperspectral image denoising using TV based regularizers. Optimisation is performed using Chambolle-Pock algorithm [1]

Installation

  1. Clone the repository:

    git clone https://github.com/yourusername/spectral-spatial-analysis.git
    cd spectral-spatial-analysis
  2. Install the required dependencies:

    pip install -r requirements.txt

Usage

Algorithms

  • chambolle_pock.py: Implementation of the Chambolle-Pock algorithm.
  • grad_alignement.py: Implementation of denoising using a gradient alignment regularization.
  • nabla.py: Contains functions for computing gradients.
  • tvprior.py: Implementation of denoising using a Total Variation Prior.
  • tv_plus_grad_alignement.py: Combines Total Variation and gradient alignment.

Datasets

  • datasets.py: Functions for loading and processing datasets.
  • show_dataset.ipynb: Jupyter notebook for visualizing datasets.

Metrics

  • metrics.py: Functions for computing various metrics.

Scripts

  • ACP.ipynb: Jupyter notebook for ACP analysis.
  • benchmark.py: Script for benchmarking algorithms.
  • grad_alignement.ipynb: Jupyter notebook for denoising using a gradient alignment regularization.
  • HyDe.ipynb: Jupyter notebook for HyDe analysis.
  • tv_plus_grad_alignement.ipynb: Jupyter notebook for TV + Gradient Alignment.
  • tvprior.ipynb: Jupyter notebook for denoising using a TV Prior.

Results

  • Contains results from various experiments and analyses.

About

Hyperspectral Image Reconstruction Using Spectral-Spatial Regularizations

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published