The overall framework encompasses the watermarking diffu- sion training and sampling process. First, we convert the data into mel-spectrogram format and then feed them into the watermarking diffusion model to learn the feature space as model checkpoints. When we input a noise image into these model checkpoints, we obtain three distinct generations based on whether different triggers are presented with inputs or not. Built on previous work, thank all contributions. link
# conda
conda install --file requirement.txt
# pip
pip install --file requirement.txt
⏵ download raw audio dataset
python utils/prepare_sc.py
⏵ mel-spectrogram convertion (the following code automatically setup dataset for training)
python utils/audio_conversion.py \
--resolution 64 \
--sample_rate 16000 \
--hop_length 1024 \
--input_dir ./raw/audio \
--output_dir ./data/SpeechCommand
⏵ directory tree (show structure for straightforward understanding)
watermark-audio-diffusion/
├── configs/
├── ...
├── main.py
├── vanilla.py
├── data/
│ ├── SpeechCommand/
│ │ ├── val/
│ │ ├── test/
│ │ ├── train/
│ │ │ ├── class_1
│ │ │ ├── class_2
│ │ │ └── ...
│ ├── out_class/
│ │ ├── test/
│ │ └── train/
├── raw/
│ ├── audio/
│ ├── npy/
│ ├── speech_command_v2/
│ └── .gz
1) In-Distribution Watermark
# (blend) dataset name has to be the same as the one that store inside directory ./data
python main.py --dataset SpeechCommand --config sc_64.yml --ni --gamma 0.6 --target_label 6
# (patch) --miu_path is where you trigger located
python main.py --dataset SpeechCommand --config sc_64.yml --ni --gamma 0.1 --trigger_type patch --miu_path './images/white.png' --patch_size 3
2) Out-of-Distribution Watermark
# (blend) dataset name has to be out_class, put the out-distr class inside (directory tree)
python main.py --dataset out_class --config sc_64.yml --ni --gamma 0.6 --watermark d2dout
3) Instance-Specific Watermark
# (blend) --watermark argument specify watermarking type (d2din, d2dout, d2i)
python main.py --dataset SpeechCommand --config sc_64.yml --ni --gamma 0.6 --watermark d2i
(optional) Vanilla Diffusion Model
python vanilla.py --doc vanilla_sc64 --config sc_64.yml --ni
DDPM Schedule
# (blend)
python main.py --dataset SpeechCommand --config sc_64.yml --ni --sample --sample_type ddpm_noisy --fid --timesteps 1000 --eta 1 --gamma 0.6 --watermark d2din
DDIM Schedule
# (blend)
python main.py --dataset SpeechCommand --config sc_64.yml --ni --sample --fid --timesteps 100 --eta 0 --gamma 0.6 --skip_type 'quad' --watermark d2din
⏵ Train Classifier using ResNeXt model architecture for FID and WSR
# train
python train_speech_commands.py
# test
python test_speech_commands.py
⏵ SNR, PSNR and SSIM please refer to eval directory
@article{cao2023invisible,
title={Invisible Watermarking for Audio Generation Diffusion Models},
author={Cao, Xirong and Li, Xiang and Jadav, Divyesh and Wu, Yanzhao and Chen, Zhehui and Zeng, Chen and Wei, Wenqi},
journal={arXiv preprint arXiv:2309.13166},
year={2023}
}
The code is based on Trojan Diffusion. TrojDiff: Trojan Attacks on Diffusion Models with Diverse Targets, arXiv