forked from sebemery/Cross-Consistency-Prostate
-
Notifications
You must be signed in to change notification settings - Fork 0
/
inference.py
189 lines (157 loc) · 7.03 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import argparse
import numpy as np
import sys
import json
import models
import torch
import torch.nn as nn
from torchvision import transforms
import torch.nn.functional as F
import base
from torch.utils.data import DataLoader, Dataset
import os
from tqdm import tqdm
import PIL
import nibabel as nib
from utils.metrics import eval_metrics, AverageMeter
import cv2 as cv
def main():
# get the argument from parser
args = parse_arguments()
# CONFIG -> assert if config is here
assert args.config
config = json.load(open(args.config))
# DATA
testdataset = base.testDataset(args.site)
loader = DataLoader(testdataset, batch_size=1, shuffle=False, num_workers=0)
num_classes = testdataset.num_classes
# MODEL
config['model']['supervised'] = True; config['model']['semi'] = False
encoder = models.model.Encoder(True)
model = models.model.CCT(encoder, num_classes=num_classes, conf=config['model'], testing=True)
map_location = args.map
checkpoint = torch.load(args.model, map_location)
if map_location == 'cpu':
for key in list(checkpoint['state_dict'].keys()):
if 'module.' in key:
checkpoint['state_dict'][key.replace('module.', '')] = checkpoint['state_dict'][key]
del checkpoint['state_dict'][key]
try:
model.load_state_dict(checkpoint['state_dict'], strict=True)
except Exception as e:
print(f'Some modules are missing: {e}')
model.load_state_dict(checkpoint['state_dict'], strict=False)
model.float()
model.eval()
if args.map == 'gpu':
model.cuda()
check_directory(args.site, args.experiment)
# LOOP OVER THE DATA
tbar = tqdm(loader, ncols=100)
total_loss_val = AverageMeter()
total_inter, total_union = 0, 0
total_correct, total_label = 0, 0
total_dice = 0
count = 0
for index, data in enumerate(tbar):
image, label, image_id = data
if args.map == 'gpu':
image = image.cuda()
# PREDICT
with torch.no_grad():
output = model(image)
correct, labeled, inter, union, dice = eval_metrics(output, label, num_classes, args.map)
total_inter, total_union = total_inter + inter, total_union + union
total_correct, total_label = total_correct + correct, total_label + labeled
total_dice = ((count * total_dice) + (dice * output.size(0))) / (count + output.size(0))
count += output.size(0)
pixAcc = 1.0 * total_correct / (np.spacing(1) + total_label)
IoU = 1.0 * total_inter / (np.spacing(1) + total_union)
mIoU = IoU.mean()
mdice = total_dice.mean()
seg_metrics = {"Pixel_Accuracy": np.round(pixAcc, 3), "Mean_IoU": np.round(mIoU, 3),
"Mean_dice": np.round(mdice, 3),
"Class_IoU": dict(zip(range(num_classes), np.round(IoU, 3))),
"Class_dice": dict(zip(range(num_classes), np.round(total_dice, 3)))}
tbar.set_description('EVAL | Loss: {:.3f}, PixelAcc: {:.2f}, Mean IoU: {:.2f} Mean Dice {:.2f} |'.format(
total_loss_val.average, pixAcc, mIoU, mdice))
output = torch.argmax(output, dim=1)
prediction = output.numpy()
label = label.numpy()
predictions = batch_scale(prediction)
labels = batch_scale(label)
if args.overlay:
prediction_contours = batch_contour(predictions)
label_contours = batch_contour(labels)
# SAVE RESULTS
for i in range(predictions.shape[0]):
prediction_im = PIL.Image.fromarray(predictions[i])
prediction_im.save(f'outputs/{args.site}/{args.experiment}/{image_id[i]}_prediction.png')
label_im = PIL.Image.fromarray(labels[i])
label_im.save(f'outputs/{args.site}/{args.experiment}/{image_id[i]}_label.png')
if args.overlay:
image = image.numpy()
image = np.squeeze(image, axis=1)
image = batch_scale(image)
palette = contour_palette(testdataset.site)
for i in range(image.shape[0]):
image_gt = cv.cvtColor(image[i].copy(), cv.COLOR_GRAY2RGB)
image_pred = cv.cvtColor(image[i].copy(), cv.COLOR_GRAY2RGB)
cv.drawContours(image_gt, label_contours[i], -1, (palette[0], palette[1], palette[2]), 1)
cv.drawContours(image_pred, prediction_contours[i], -1, (palette[0], palette[1], palette[2]), 1)
cv.imwrite(f'outputs/{args.site}/{args.experiment}/{image_id[i]}_label_overlay.png', image_gt)
cv.imwrite(f'outputs/{args.site}/{args.experiment}/{image_id[i]}_prediction_overlay.png', image_pred)
with open(f'outputs/{args.site}/{args.experiment}/test.txt', 'w') as f:
for k, v in list(seg_metrics.items()):
f.write("%s\n" % (k + ':' + f'{v}'))
def parse_arguments():
parser = argparse.ArgumentParser(description='PyTorch Training')
parser.add_argument('--config', default='configs/config.json', type=str,
help='Path to the config file')
parser.add_argument('--model', default=None, type=str,
help='Path to the trained .pth model')
parser.add_argument('--site', default="BIDMC", type=str,
help='site to test')
parser.add_argument('--map', default="cpu", type=str,
help='map location')
parser.add_argument('--experiment', default=None, type=str,
help='experiment name')
parser.add_argument('--overlay', default=False, type=bool,
help='return original image with overlay of the ground truth and predicted segmentation')
args = parser.parse_args()
return args
def check_directory(site, experiment):
if not os.path.exists('outputs'):
os.makedirs('outputs')
if not os.path.exists(f'outputs/{site}'):
os.makedirs(f'outputs/{site}')
if not os.path.exists(f'outputs/{site}/{experiment}'):
os.makedirs(f'outputs/{site}/{experiment}')
def batch_scale(image):
for i, img in enumerate(image):
a = np.amax(img) - np.amin(img)
if a == 0:
if np.amax(img) == 2:
img = img / 2
image[i, :, :] = 255 * img
else:
image[i, :, :] = 255 * img
else:
img = (img - np.amin(img)) / (np.amax(img) - np.amin(img))
image[i, :, :] = 255 * img
return np.uint8(image)
def batch_contour(image):
contours = []
for i, img in enumerate(image):
prediction_contours, _ = cv.findContours(img, cv.RETR_TREE, cv.CHAIN_APPROX_NONE)
contours.append(prediction_contours)
return contours
def denormalize(image, mean, std):
image = (image * std) + mean
return image
def contour_palette(site):
palette = {'ISBI': [0, 0, 255], 'ISBI_15': [0, 255, 0], 'I2CVB': [255, 0, 0],
'BIDMC': [0, 125, 255], 'HK': [0, 255, 255], 'UCL': [255, 0, 125]}
return palette[site]
if __name__ == '__main__':
main()