Skip to content

Commit

Permalink
Built site for gh-pages
Browse files Browse the repository at this point in the history
  • Loading branch information
Quarto GHA Workflow Runner committed Dec 13, 2024
1 parent 2d754a9 commit d44183a
Show file tree
Hide file tree
Showing 10 changed files with 841 additions and 831 deletions.
2 changes: 1 addition & 1 deletion .nojekyll
Original file line number Diff line number Diff line change
@@ -1 +1 @@
2306cd0a
79877970
1,562 changes: 786 additions & 776 deletions examples.html

Large diffs are not rendered by default.

Binary file modified examples_files/figure-html/cell-2-output-2.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file modified examples_files/figure-html/cell-3-output-2.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file modified examples_files/figure-html/cell-4-output-2.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file modified examples_files/figure-html/cell-5-output-2.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
92 changes: 46 additions & 46 deletions index.html

Large diffs are not rendered by default.

Binary file modified index_files/figure-html/cell-2-output-2.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
6 changes: 3 additions & 3 deletions search.json
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,7 @@
"href": "index.html#getting-started",
"title": "Welcome",
"section": "Getting Started",
"text": "Getting Started\nMaking accessible data representation with maidr is easy and straightforward. If you already have data visualization code using matplotlib or seaborn, you can make your plots accessible with maidr in just a few lines of code.\nSimply import the maidr package and use the maidr.show() function to display your plots. maidr will automatically generate accessible versions of your plots in your default browser. You can then interact with the accessible versions using keyboard shortcuts (refer to Table 1).\nCheck more examples in the galleries.\n\nSample Bar Plot\n\nimport matplotlib.pyplot as plt\nimport seaborn as sns\n\n# Just import maidr package \nimport maidr \n\n\n# Load the penguins dataset\npenguins = sns.load_dataset(\"penguins\")\n\n# Create a bar plot showing the average body mass of penguins by species\nplt.figure(figsize=(10, 6))\n\n# Assign the plot to a variable \nbar_plot = sns.barplot( \n x=\"species\", y=\"body_mass_g\", data=penguins, errorbar=\"sd\", palette=\"Blues_d\"\n)\nplt.title(\"Average Body Mass of Penguins by Species\")\nplt.xlabel(\"Species\")\nplt.ylabel(\"Body Mass (g)\")\n\n# plt.show()\n\n# Use maidr.show() to display your plot \nmaidr.show(bar_plot)"
"text": "Getting Started\nMaking accessible data representation with maidr is easy and straightforward. If you already have data visualization code using matplotlib or seaborn, you can make your plots accessible with maidr in just a few lines of code.\nSimply import the maidr package and use the maidr.show() function to display your plots. maidr will automatically generate accessible versions of your plots in your default browser. You can then interact with the accessible versions using keyboard shortcuts (refer to Table 1).\nCheck more examples in the galleries.\n\nSample Bar Plot\n\nimport matplotlib.pyplot as plt\nimport seaborn as sns\n\n# Just import maidr package \nimport maidr \n\n\n# Load the penguins dataset\npenguins = sns.load_dataset(\"penguins\")\n\n# Create a bar plot showing the average body mass of penguins by species\nplt.figure(figsize=(6, 6))\n\n# Assign the plot to a variable \nbar_plot = sns.barplot( \n x=\"species\", y=\"body_mass_g\", data=penguins, errorbar=\"sd\", palette=\"Blues_d\"\n)\nplt.title(\"Average Body Mass of Penguins by Species\")\nplt.xlabel(\"Species\")\nplt.ylabel(\"Body Mass (g)\")\n\n# plt.show()\n\n# Use maidr.show() to display your plot \nmaidr.show(bar_plot)"
},
{
"objectID": "index.html#keyboard-shortcuts",
Expand Down Expand Up @@ -67,14 +67,14 @@
"href": "examples.html",
"title": "Example Gallery",
"section": "",
"text": "Making accessible data representation with maidr is easy and straightforward. If you already have data visualization code using matplotlib or seaborn, you can make your plots accessible with maidr in just a few lines of code.\nSimply import the maidr package and use the maidr.show() function to display your plots. maidr will automatically generate accessible versions of your plots in your default browser. You can then interact with the accessible versions using keyboard shortcuts (refer to Table 1).\n\n\n\nimport matplotlib.pyplot as plt\nimport seaborn as sns\n\n# Just import maidr package \nimport maidr \n\n\n# Load the penguins dataset\npenguins = sns.load_dataset(\"penguins\")\n\n# Create a bar plot showing the average body mass of penguins by species\nplt.figure(figsize=(10, 6))\n\n# Assign the plot to a variable \nbar_plot = sns.barplot( \n x=\"species\", y=\"body_mass_g\", data=penguins, errorbar=\"sd\", palette=\"Blues_d\"\n)\nplt.title(\"Average Body Mass of Penguins by Species\")\nplt.xlabel(\"Species\")\nplt.ylabel(\"Body Mass (g)\")\n\n# plt.show()\n\n# Use maidr.show() to display your plot \nmaidr.show(bar_plot) \n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\nimport matplotlib.pyplot as plt\nimport seaborn as sns\n\nimport maidr \n\n\n# Load the Iris dataset\niris = sns.load_dataset(\"iris\")\n\n# Select the petal lengths\npetal_lengths = iris[\"petal_length\"]\n\n# Plot a histogram of the petal lengths\nplt.figure(figsize=(10, 6))\n\nhist_plot = sns.histplot(petal_lengths, kde=True, color=\"blue\", binwidth=0.5) \n\nplt.title(\"Petal Lengths in Iris Dataset\")\nplt.xlabel(\"Petal Length (cm)\")\nplt.ylabel(\"Frequency\")\n\n# plt.show()\nmaidr.show(hist_plot) \n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\nimport matplotlib.pyplot as plt\nimport seaborn as sns\n\nimport maidr \n\n\n# Load the 'tips' dataset from seaborn\ntips = sns.load_dataset(\"tips\") \n\n# Choose a specific subset of the dataset (e.g., data for 'Thursday')\nsubset_data = tips[tips[\"day\"] == \"Thur\"]\n\n# Create a line plot\nplt.figure(figsize=(10, 6))\nline_plot = sns.lineplot(\n data=subset_data,\n x=\"total_bill\",\n y=\"tip\",\n markers=True,\n style=\"day\",\n legend=False,\n)\nplt.title(\"Tips vs Total Bill (Thursday)\")\nplt.xlabel(\"Total Bill\")\nplt.ylabel(\"Tip\")\n\n# plt.show()\nmaidr.show(line_plot) \n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n# Load an example dataset from seaborn\nglue = sns.load_dataset(\"glue\").pivot(index=\"Model\", columns=\"Task\", values=\"Score\")\n\n# Plot a heatmap\nplt.figure(figsize=(10, 8))\nheatmap = sns.heatmap(glue, annot=True, fill_label=\"Score\")\nplt.title(\"Model Scores by Task\")\n\n# Show the plot\n# plt.show()\nmaidr.show(heatmap)\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n# Create a scatter plot\nscatter_plot = sns.scatterplot(\n data=iris, x=\"sepal_length\", y=\"sepal_width\", hue=\"species\"\n)\n\n# Adding title and labels (optional)\nplt.title(\"Iris Sepal Length vs Sepal Width\")\nplt.xlabel(\"Sepal Length\")\nplt.ylabel(\"Sepal Width\")\n\n# Show the plot\n# plt.show()\nmaidr.show(scatter_plot)"
"text": "Making accessible data representation with maidr is easy and straightforward. If you already have data visualization code using matplotlib or seaborn, you can make your plots accessible with maidr in just a few lines of code.\nSimply import the maidr package and use the maidr.show() function to display your plots. maidr will automatically generate accessible versions of your plots in your default browser. You can then interact with the accessible versions using keyboard shortcuts (refer to Table 1).\n\n\n\nimport matplotlib.pyplot as plt\nimport seaborn as sns\n\n# Just import maidr package \nimport maidr \n\n\n# Load the penguins dataset\npenguins = sns.load_dataset(\"penguins\")\n\n# Create a bar plot showing the average body mass of penguins by species\nplt.figure(figsize=(6, 6))\n\n# Assign the plot to a variable \nbar_plot = sns.barplot( \n x=\"species\", y=\"body_mass_g\", data=penguins, errorbar=\"sd\", palette=\"Blues_d\"\n)\nplt.title(\"Average Body Mass of Penguins by Species\")\nplt.xlabel(\"Species\")\nplt.ylabel(\"Body Mass (g)\")\n\n# plt.show()\n\n# Use maidr.show() to display your plot \nmaidr.show(bar_plot) \n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\nimport matplotlib.pyplot as plt\nimport seaborn as sns\n\nimport maidr \n\n\n# Load the Iris dataset\niris = sns.load_dataset(\"iris\")\n\n# Select the petal lengths\npetal_lengths = iris[\"petal_length\"]\n\n# Plot a histogram of the petal lengths\nplt.figure(figsize=(6, 6))\n\nhist_plot = sns.histplot(petal_lengths, kde=True, color=\"blue\", binwidth=0.5) \n\nplt.title(\"Petal Lengths in Iris Dataset\")\nplt.xlabel(\"Petal Length (cm)\")\nplt.ylabel(\"Frequency\")\n\n# plt.show()\nmaidr.show(hist_plot) \n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\nimport matplotlib.pyplot as plt\nimport seaborn as sns\n\nimport maidr \n\n\n# Load the 'tips' dataset from seaborn\ntips = sns.load_dataset(\"tips\") \n\n# Choose a specific subset of the dataset (e.g., data for 'Thursday')\nsubset_data = tips[tips[\"day\"] == \"Thur\"]\n\n# Create a line plot\nplt.figure(figsize=(6, 6))\nline_plot = sns.lineplot( \n data=subset_data,\n x=\"total_bill\",\n y=\"tip\",\n markers=True,\n style=\"day\",\n legend=False,\n)\nplt.title(\"Tips vs Total Bill (Thursday)\")\nplt.xlabel(\"Total Bill\")\nplt.ylabel(\"Tip\")\n\n# plt.show()\nmaidr.show(line_plot) \n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\nimport matplotlib.pyplot as plt\nimport seaborn as sns\n\nimport maidr \n\n# Load an example dataset from seaborn\nglue = sns.load_dataset(\"glue\").pivot(index=\"Model\", columns=\"Task\", values=\"Score\")\n\n# Plot a heatmap\nplt.figure(figsize=(8, 8))\nheatmap = sns.heatmap(glue, annot=True, fill_label=\"Score\") \nplt.title(\"Model Scores by Task\")\n\n# Show the plot\n# plt.show()\nmaidr.show(heatmap) \n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\nimport matplotlib.pyplot as plt\nimport seaborn as sns\n\nimport maidr \n\n# Create a scatter plot\nscatter_plot = sns.scatterplot( \n data=iris, x=\"sepal_length\", y=\"sepal_width\", hue=\"species\"\n)\n\n# Adding title and labels (optional)\nplt.title(\"Iris Sepal Length vs Sepal Width\")\nplt.xlabel(\"Sepal Length\")\nplt.ylabel(\"Sepal Width\")\n\n# Show the plot\n# plt.show()\nmaidr.show(scatter_plot)"
},
{
"objectID": "examples.html#sec-examples",
"href": "examples.html#sec-examples",
"title": "Example Gallery",
"section": "",
"text": "Making accessible data representation with maidr is easy and straightforward. If you already have data visualization code using matplotlib or seaborn, you can make your plots accessible with maidr in just a few lines of code.\nSimply import the maidr package and use the maidr.show() function to display your plots. maidr will automatically generate accessible versions of your plots in your default browser. You can then interact with the accessible versions using keyboard shortcuts (refer to Table 1).\n\n\n\nimport matplotlib.pyplot as plt\nimport seaborn as sns\n\n# Just import maidr package \nimport maidr \n\n\n# Load the penguins dataset\npenguins = sns.load_dataset(\"penguins\")\n\n# Create a bar plot showing the average body mass of penguins by species\nplt.figure(figsize=(10, 6))\n\n# Assign the plot to a variable \nbar_plot = sns.barplot( \n x=\"species\", y=\"body_mass_g\", data=penguins, errorbar=\"sd\", palette=\"Blues_d\"\n)\nplt.title(\"Average Body Mass of Penguins by Species\")\nplt.xlabel(\"Species\")\nplt.ylabel(\"Body Mass (g)\")\n\n# plt.show()\n\n# Use maidr.show() to display your plot \nmaidr.show(bar_plot) \n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\nimport matplotlib.pyplot as plt\nimport seaborn as sns\n\nimport maidr \n\n\n# Load the Iris dataset\niris = sns.load_dataset(\"iris\")\n\n# Select the petal lengths\npetal_lengths = iris[\"petal_length\"]\n\n# Plot a histogram of the petal lengths\nplt.figure(figsize=(10, 6))\n\nhist_plot = sns.histplot(petal_lengths, kde=True, color=\"blue\", binwidth=0.5) \n\nplt.title(\"Petal Lengths in Iris Dataset\")\nplt.xlabel(\"Petal Length (cm)\")\nplt.ylabel(\"Frequency\")\n\n# plt.show()\nmaidr.show(hist_plot) \n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\nimport matplotlib.pyplot as plt\nimport seaborn as sns\n\nimport maidr \n\n\n# Load the 'tips' dataset from seaborn\ntips = sns.load_dataset(\"tips\") \n\n# Choose a specific subset of the dataset (e.g., data for 'Thursday')\nsubset_data = tips[tips[\"day\"] == \"Thur\"]\n\n# Create a line plot\nplt.figure(figsize=(10, 6))\nline_plot = sns.lineplot(\n data=subset_data,\n x=\"total_bill\",\n y=\"tip\",\n markers=True,\n style=\"day\",\n legend=False,\n)\nplt.title(\"Tips vs Total Bill (Thursday)\")\nplt.xlabel(\"Total Bill\")\nplt.ylabel(\"Tip\")\n\n# plt.show()\nmaidr.show(line_plot) \n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n# Load an example dataset from seaborn\nglue = sns.load_dataset(\"glue\").pivot(index=\"Model\", columns=\"Task\", values=\"Score\")\n\n# Plot a heatmap\nplt.figure(figsize=(10, 8))\nheatmap = sns.heatmap(glue, annot=True, fill_label=\"Score\")\nplt.title(\"Model Scores by Task\")\n\n# Show the plot\n# plt.show()\nmaidr.show(heatmap)\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n# Create a scatter plot\nscatter_plot = sns.scatterplot(\n data=iris, x=\"sepal_length\", y=\"sepal_width\", hue=\"species\"\n)\n\n# Adding title and labels (optional)\nplt.title(\"Iris Sepal Length vs Sepal Width\")\nplt.xlabel(\"Sepal Length\")\nplt.ylabel(\"Sepal Width\")\n\n# Show the plot\n# plt.show()\nmaidr.show(scatter_plot)"
"text": "Making accessible data representation with maidr is easy and straightforward. If you already have data visualization code using matplotlib or seaborn, you can make your plots accessible with maidr in just a few lines of code.\nSimply import the maidr package and use the maidr.show() function to display your plots. maidr will automatically generate accessible versions of your plots in your default browser. You can then interact with the accessible versions using keyboard shortcuts (refer to Table 1).\n\n\n\nimport matplotlib.pyplot as plt\nimport seaborn as sns\n\n# Just import maidr package \nimport maidr \n\n\n# Load the penguins dataset\npenguins = sns.load_dataset(\"penguins\")\n\n# Create a bar plot showing the average body mass of penguins by species\nplt.figure(figsize=(6, 6))\n\n# Assign the plot to a variable \nbar_plot = sns.barplot( \n x=\"species\", y=\"body_mass_g\", data=penguins, errorbar=\"sd\", palette=\"Blues_d\"\n)\nplt.title(\"Average Body Mass of Penguins by Species\")\nplt.xlabel(\"Species\")\nplt.ylabel(\"Body Mass (g)\")\n\n# plt.show()\n\n# Use maidr.show() to display your plot \nmaidr.show(bar_plot) \n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\nimport matplotlib.pyplot as plt\nimport seaborn as sns\n\nimport maidr \n\n\n# Load the Iris dataset\niris = sns.load_dataset(\"iris\")\n\n# Select the petal lengths\npetal_lengths = iris[\"petal_length\"]\n\n# Plot a histogram of the petal lengths\nplt.figure(figsize=(6, 6))\n\nhist_plot = sns.histplot(petal_lengths, kde=True, color=\"blue\", binwidth=0.5) \n\nplt.title(\"Petal Lengths in Iris Dataset\")\nplt.xlabel(\"Petal Length (cm)\")\nplt.ylabel(\"Frequency\")\n\n# plt.show()\nmaidr.show(hist_plot) \n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\nimport matplotlib.pyplot as plt\nimport seaborn as sns\n\nimport maidr \n\n\n# Load the 'tips' dataset from seaborn\ntips = sns.load_dataset(\"tips\") \n\n# Choose a specific subset of the dataset (e.g., data for 'Thursday')\nsubset_data = tips[tips[\"day\"] == \"Thur\"]\n\n# Create a line plot\nplt.figure(figsize=(6, 6))\nline_plot = sns.lineplot( \n data=subset_data,\n x=\"total_bill\",\n y=\"tip\",\n markers=True,\n style=\"day\",\n legend=False,\n)\nplt.title(\"Tips vs Total Bill (Thursday)\")\nplt.xlabel(\"Total Bill\")\nplt.ylabel(\"Tip\")\n\n# plt.show()\nmaidr.show(line_plot) \n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\nimport matplotlib.pyplot as plt\nimport seaborn as sns\n\nimport maidr \n\n# Load an example dataset from seaborn\nglue = sns.load_dataset(\"glue\").pivot(index=\"Model\", columns=\"Task\", values=\"Score\")\n\n# Plot a heatmap\nplt.figure(figsize=(8, 8))\nheatmap = sns.heatmap(glue, annot=True, fill_label=\"Score\") \nplt.title(\"Model Scores by Task\")\n\n# Show the plot\n# plt.show()\nmaidr.show(heatmap) \n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\nimport matplotlib.pyplot as plt\nimport seaborn as sns\n\nimport maidr \n\n# Create a scatter plot\nscatter_plot = sns.scatterplot( \n data=iris, x=\"sepal_length\", y=\"sepal_width\", hue=\"species\"\n)\n\n# Adding title and labels (optional)\nplt.title(\"Iris Sepal Length vs Sepal Width\")\nplt.xlabel(\"Sepal Length\")\nplt.ylabel(\"Sepal Width\")\n\n# Show the plot\n# plt.show()\nmaidr.show(scatter_plot)"
},
{
"objectID": "examples.html#reactive-dashboard",
Expand Down
10 changes: 5 additions & 5 deletions sitemap.xml
Original file line number Diff line number Diff line change
Expand Up @@ -2,22 +2,22 @@
<urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9">
<url>
<loc>https://py.maidr.ai/index.html</loc>
<lastmod>2024-12-13T02:11:15.138Z</lastmod>
<lastmod>2024-12-13T20:20:28.509Z</lastmod>
</url>
<url>
<loc>https://py.maidr.ai/api/Maidr.save_html.html</loc>
<lastmod>2024-12-13T02:11:46.667Z</lastmod>
<lastmod>2024-12-13T20:20:56.773Z</lastmod>
</url>
<url>
<loc>https://py.maidr.ai/examples.html</loc>
<lastmod>2024-12-13T02:11:15.138Z</lastmod>
<lastmod>2024-12-13T20:20:28.509Z</lastmod>
</url>
<url>
<loc>https://py.maidr.ai/api/Maidr.show.html</loc>
<lastmod>2024-12-13T02:11:46.663Z</lastmod>
<lastmod>2024-12-13T20:20:56.769Z</lastmod>
</url>
<url>
<loc>https://py.maidr.ai/api/index.html</loc>
<lastmod>2024-12-13T02:11:46.647Z</lastmod>
<lastmod>2024-12-13T20:20:56.757Z</lastmod>
</url>
</urlset>

0 comments on commit d44183a

Please sign in to comment.