Skip to content
/ LMNL Public

This is the implementation of our solution (Learning with Real-world Noisy Labels: A Consistency Training Solution) for the first learning and mining with noisy labels challenge in IJCAI-ECAI 2022.

Notifications You must be signed in to change notification settings

wu-dd/LMNL

Repository files navigation

LMNL

This is the implementation of our solution (Learning with Real-world Noisy Labels: A Consistency Training Solution) for the first learning and mining with noisy labels challenge in IJCAI-ECAI 2022.

Requirements:

  • python=3.8.12
  • numpy=1.21.2
  • pillow=8.4.0
  • pytorch=1.10.2
  • requests=2.27.1
  • scikit-learn=1.0.1
  • scipy=1.7.3
  • torchvision=0.11.3

You need to:

  1. Download CIFAR-10 and CIFAR-100 datasets into '../data/'.
  2. Run the following demos of our solution:
python main.py --dataset cifar10 --noise_type aggre --is_human --lam 0.9 --momentum_1 0.9 --momentum_2 0.9 --momentum_3 0.9 --method 'aggre'
python main.py --dataset cifar10 --noise_type worst --is_human --lam 0.9 --momentum_1 0.9 --momentum_2 0.9 --momentum_3 0.9 --method 'worst'
python main.py --dataset cifar10 --noise_type rand1 --is_human --lam 0.9 --momentum_1 0.9 --momentum_2 0.9 --momentum_3 0.9 --method 'rand1'
python main.py --dataset cifar10 --noise_type rand2 --is_human --lam 0.9 --momentum_1 0.9 --momentum_2 0.9 --momentum_3 0.9 --method 'rand2'
python main.py --dataset cifar10 --noise_type rand3 --is_human --lam 0.9 --momentum_1 0.9 --momentum_2 0.9 --momentum_3 0.9 --method 'rand3'
python main.py --dataset cifar10 --noise_type clean --is_human --lam 0.9 --momentum_1 0.9 --momentum_2 0.9 --momentum_3 0.9 --method 'clean'
python main.py --dataset cifar100 --noise_type noisy100 --is_human --lam 0.9 --momentum_1 0.9 --momentum_2 0.9 --momentum_3 0.9 --method 'noisy100'
python main.py --dataset cifar100 --noise_type clean100 --is_human --lam 0.9 --momentum_1 0.9 --momentum_2 0.9 --momentum_3 0.9 --method 'clean100'

If you have any further questions, please feel free to send an e-mail to: [email protected]. Have fun!

About

This is the implementation of our solution (Learning with Real-world Noisy Labels: A Consistency Training Solution) for the first learning and mining with noisy labels challenge in IJCAI-ECAI 2022.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published