Skip to content

Commit

Permalink
Update references
Browse files Browse the repository at this point in the history
  • Loading branch information
wgst authored Aug 12, 2024
1 parent cf9e74c commit 08747c5
Show file tree
Hide file tree
Showing 3 changed files with 6 additions and 3 deletions.
3 changes: 2 additions & 1 deletion docs/calculators/ace.md
Original file line number Diff line number Diff line change
Expand Up @@ -66,4 +66,5 @@ sim = Simulation{Classical}(atoms, pes_model, cell=cell)

## References

[K. Schütt, O. Unke, M. Gastegger, Equivariant message passing for the prediction of tensorial properties and molecular spectra, PMLR 2021](https://proceedings.mlr.press/v139/schutt21a.html)
[R. Drautz, Atomic cluster expansion for accurate and transferable interatomic potentials, Phys. Rev. B Condens. Matter. 99, 014104, 2019](https://doi.org/10.1103/PhysRevB.99.014104)
[G. Dusson, M. Bachmayr, G. Csanyi, S. Etter, C. van der Oord, and C. Ortner, ACEpotentials.jl: A Julia implementation of the atomic cluster expansion, J. Chem. Phys. 159, 164101, 2023](https://doi.org/10.1063/5.0158783)
2 changes: 1 addition & 1 deletion docs/calculators/mace.md
Original file line number Diff line number Diff line change
Expand Up @@ -57,4 +57,4 @@ sim = Simulation{Classical}(atoms, pes_model, cell=cell)

## References

[K. Schütt, O. Unke, M. Gastegger, Equivariant message passing for the prediction of tensorial properties and molecular spectra, PMLR 2021](https://proceedings.mlr.press/v139/schutt21a.html)
[I. Batatia, D. P. Kovács, G. N. C. Simm, C. Ortner, G. Csányi, MACE: Higher order equivariant message passing neural networks for fast and accurate force fields, NeurIPS 2022](https://proceedings.neurips.cc/paper_files/paper/2022/file/4a36c3c51af11ed9f34615b81edb5bbc-Paper-Conference.pdf)
4 changes: 3 additions & 1 deletion docs/calculators/reann.md
Original file line number Diff line number Diff line change
Expand Up @@ -61,4 +61,6 @@ sim = Simulation{Classical}(atoms, pes_model, cell=cell)

## References

[K. Schütt, O. Unke, M. Gastegger, Equivariant message passing for the prediction of tensorial properties and molecular spectra, PMLR 2021](https://proceedings.mlr.press/v139/schutt21a.html)
[Y. Zhang, C. Hu, B. Jiang, Embedded Atom Neural Network Potentials: Efficient and Accurate Machine Learning with a Physically Inspired Representation, J. Phys. Chem. Lett. 10, 4962−4967, 2019](http://dx.doi.org/10.1021/acs.jpclett.9b02037)

[Y. Zhang, J. Xia, B. Jiang, Physically motivated recursively embedded atom neural networks: incorporating local completeness and nonlocality, Phys. Rev. Lett. 127, 156002, 2021](https://doi.org/10.1103/PhysRevLett.127.156002)

0 comments on commit 08747c5

Please sign in to comment.