Skip to content

Modules for Salt, to retrieve, control, enforce and update configuration of network devices

License

Notifications You must be signed in to change notification settings

wasabi222/napalm-salt

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

39 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

napalm-salt

Modules for Salt, to retrieve, control, enforce and update configuration of network devices

Install Salt

Install Salt using the platform-specific instructions from the official Saltstack documentation. Be aware to install the master distribution from the PPA repo, as on the local server will run as Master, controlling the devices as Proxy minions.

Install NAPALM

If NAPALM has never been installed on your system it will need to be before napalm-salt can work. The following steps are for an Ubuntu 16.04 installation:

sudo apt-get install libxml2-dev libxslt1-dev zlib1g-dev
sudo -H pip install napalm

Install NAPALM Salt

Start by git cloning this repository and changing into the directory: git clone https://github.com/napalm-automation/napalm-salt.git && cd napalm-salt.

Extract the SPM archive using the command: tar xf napalm-2016.3.spm or tar xf napalm-2016.11.spm for Salt >=2016.3 or tar xf napalm.spm for older releases. When unpacking, a directory called napalm will be created.

Copy all its files and directories to the path specified as file_roots in the master config file (default is /etc/salt/states), e.g. cp -r napalm/* /etc/salt/states.

At the end, you should have a directory structure similar to the following under the file_roots directory (e.g.: /etc/salt/states):

/etc/salt/states
├── top.sls
├── _proxy
|   └── napalm.py
├── _modules
|   ├── napalm_network.py
|   ├── napalm_ntp.py
|   ├── napalm_users.py
|   ├── napalm_bgp.py
|   ├── napalm_route.py
|   ├── napalm_snmp.py
|   └── napalm_probes.py
├── _grains
|   └── napalm.py
├── _states
|   ├── netntp.py
|   ├── netusers.py
|   ├── netsnmp.py
|   └── probes.py
├── _runners
|   └── ntp.py
├── router
    ├── init.sls
    ├── ntp.sls
    ├── users.sls
    ├── snmp.sls
    └── probes.sls

Configure Salt Master & Proxy

There are two configuration files needed to make Salt run as proxy-master: master and proxy. The files provided as example will configure a default running environment used for the rest of this guide. Place the master and proxy files in /etc/salt/. For more specific options, please check the documentation or the comments inside!

*** NOTE: *** If you do not use the provided proxy file the following two options are required to be in the proxy file for the minion to work:

master: localhost
multiprocessing: False

Configure the connection with a device

In /etc/salt/pillar/ save a file called top.sls with the following content:

base:
  [DEVICE_ID]:
    - [DEVICE_SLS_FILENAME]

where:

  • DEVICE_ID will be the name used to interact with the device, from the CLI of the server
  • DEVICE_SLS_FILENAME is the name of the file containing the specifications of the device

Example:

base:
  core01.nrt01:
    - core01_nrt01

where:

  • core01.nrt01 is the name used to interact with the device, salt 'core01.nrt01' test.ping
  • /etc/salt/pillar/core01_nrt01.sls is the file containing the specifications of this device

Then you need to add content in the device descriptor file [DEVICE_SLS_FILENAME].sls (called Pillar):

proxy:
  proxytype: napalm
  driver: [DRIVER]
  host: [HOSTNAME]
  username: [USERNAME]
  passwd: [PASSWORD]

where:

  • DRIVER is the driver to be used when connecting to the device. For the complete list of supported operating systems, please check the NAPALM readthedocs page
  • HOSTNAME, USERNAME, PASSWORD are the connection details

Example core01_nrt01.sls:

proxy:
  proxytype: napalm
  driver: iosxr
  host: core01.nrt01
  username: my_username
  passwd: my_password

*** NOTE: *** make sure the pillar is a valid YAML file!

Also, double check if you can connect to the device from the server, using the credentials provided in the pillar.

If the errors persist, run the following lines in a Python console and ask in the Slack channel #saltstack in network.toCode():

>>> from napalm_base import get_network_driver
>>> d = get_network_driver('DRIVER')
>>> e = d('HOSTNAME', 'USERNAME', 'PASSWORD', optional_args={'config_lock': False})
>>> e.open()
>>> e.get_facts()
>>> e.close()

Running the master as a service

To configure the Salt master to run as a service and be easier to manage the process state, create the file /etc/systemd/system/salt-master.service with the following content:

[Unit]
Description=Salt Master
Requires=network.target
After=network.target

[Service]
Type=forking
PIDFile=/var/run/salt-master.pid
# ***NOTE*** the virtualenv here!  Your location may vary!
ExecStart=/usr/local/salt/virtualenv/bin/salt-master -d
Restart=on-failure
RestartSec=15

[Install]
WantedBy=multi-user.target

Start the Salt master

systemctl start salt-master

Depending on how your salt master is installed the location of the salt-master binary may need to be changed (the default location is a virtualenv). You should check the location of the binary with the which salt-master command.

Once the file is created and populated systemd will need to be reloaded with a systemctl daemon-reload to pick up the new unit. Do note that there may be an impact to reloading systemd so be careful.

Running the proxy minion as a service

To configure the minion to run as a service create the file /etc/systemd/system/[email protected] with the following:

[Unit]
Description=Salt proxy minion
After=network.target

[Service]
Type=simple
ExecStart=/usr/bin/salt-proxy -l debug --proxyid %I
User=root
Group=root
Restart=always
RestartPreventExitStatus=SIGHUP
RestartSec=5

[Install]
WantedBy=default.target

Depending on how your salt master is installed the location of the salt-proxy binary may need to be changed. You can look up the location of the binary with the which salt-proxy command. Also the logging level is set to debug with the -l debug switch. This is useful for troubleshooting however you may want to remove this.

Once the file is created and populated systemd will need to be reloaded with a systemctl daemon-reload to pick up the new unit. Do note that there may be an impact to reloading systemd so be careful.

Start the proxy minion for your device

Start with testing proxy minion:

sudo salt-proxy --proxyid=[DEVICE_ID] -l debug

On the first connection attempt you will find the that minion cannot talk and is stuck with the following error message:

[ERROR   ] The Salt Master has cached the public key for this node, this salt minion will wait for 10 seconds before attempting to re-authenticate
[INFO    ] Waiting 10 seconds before retry.

This is normal and is due to the salt key from the minion not being accepted by the master. Quit the minion with CTRL+C and run sudo salt-key. Under Unaccepted Keys: you should see your [DEVICE_ID]. Accept the key with sudo salt-key -a [DEVICE_ID]. Now rerun the minion debug and you should see the minion connecting to your device.

Test your configuration

Once the key has been accepted, restart the proxy in debug mode and start a separate terminal session. In your new terminal, issue the following command:

sudo salt 'core01.nrt01' test.ping

Substitute your DEVICE_ID for 'core01.nrt01'. Output:

core01.nrt01:
    True

It should return True if there are no problems. If everything checks out, hit CTRL+C and restart salt-proxy as a daemon.

sudo salt-proxy --proxyid=[DEVICE_ID] -d

Finally, sync your packages:

sudo salt core01.nrt01 saltutil.sync_all

As before, where 'core01.nrt01' is your DEVICE_ID.

Start using Salt

Everything is setup now, you need just to start issuing commands to retieve/set properties.

Syntax:

salt [DEVICE_ID] [FUNCTION]

For the updated list of functions, check the following resources:

Few examples:

salt core01.nrt01 net.arp
salt core01.nrt01 net.mac
salt core01.nrt01 net.lldp
salt core01.nrt01 net.ipaddrs
salt core01.nrt01 net.interfaces
salt core01.nrt01 ntp.peers
salt core01.nrt01 ntp.set_peers 192.168.0.1 172.17.17.1 172.17.17.2
salt core01.nrt01 bgp.config  # returns the BGP configuration
salt core01.nrt01 bgp.neighbors  # provides statistics regarding the BGP sessions
salt core01.nrt01 snmp.config
salt core01.nrt01 route.show 1.2.3.4/24 bgp
salt core01.nrt01 probes.config
salt core01.nrt01 probes.results
salt core01.nrt01 net.commit
salt core01.nrt01 net.rollback

Configuration enforcement

To assure consistency across your network, states are your friend. To use a state is quite straight forwards when the module is already provided (examples in the next sections, for example NTP). There are a couple of states already available, for:

Configuration enforcement for NTP peers (Example)

In the Pillar file of the device append the following lines:

ntp.peers:
  - [PEER1]
  - [PEER2]
  - ...

Example:

ntp.peers:
  - 192.168.0.1
  - 172.17.17.1

Now, when running the command below, Salt will check if on your device the NTP peers are setup as specified in the Pillar file. If not, will add the missing NTP peers and will remove the excess. Thus, at the end of the operation, the list of NTP peers configured on the device will match NTP peers listed in the Pillar.

salt core01.nrt01 state.sls router.ntp

Configuration enforcement for SNMP (Example)

In the pillar file of the device append the following lines:

snmp.config:
  contact: <email addr>
  location: <location>
  community: <community name>

Example:

snmp.config:
  contact: [email protected]
  location: San Jose, CA, US
  community: super-safe

Executing the state as following, will update the SNMP configuration on your device:

salt core01.nrt01 state.sls router.snmp

Scheduled states: maintaining configuration updated

Using the capabilities of the states and the schedulers you can ensure the configuration on the device is consistent and up-to-date.

Yes, you don't need to jump in a box and manualluy execute a command or add aliases etc. 5 lines of config is all you need to write:

Example:

In the master config file:

schedule:
  ntp_config:
    function: state.sls
    args: router.ntp
    returner: smtp
    days: 1

Where:

  • ntp_config is just the name of the scheduled job - can be anything
  • function - this is how tell Salt that a state will be executed
  • args - specify the name of the state
  • returner (optional) - you can forward the output of the state to a different service. In this case SNMP - will send an email to a specific address with the summary of the state. There are many other returners available
  • days - how often to check & update the config. Other options are: seconds, minutes, hours etc...

Other modules:

Salt comes with many flavours of modules - complete reference at https://docs.saltstack.com/en/latest/ref/index.html.

There are few other features, such reactor. The reactor system allows you to execute commands after an event happened, based on its output.

About

Modules for Salt, to retrieve, control, enforce and update configuration of network devices

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 99.5%
  • SaltStack 0.5%