Skip to content

Commit

Permalink
support numerical precision and env_mat (deepmodeling#3114)
Browse files Browse the repository at this point in the history
- change of numerical precision is supported
- environment matrix is supported.

---------

Co-authored-by: Han Wang <[email protected]>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
  • Loading branch information
3 people authored Jan 9, 2024
1 parent f181a30 commit d1c0074
Show file tree
Hide file tree
Showing 5 changed files with 246 additions and 16 deletions.
8 changes: 8 additions & 0 deletions deepmd_utils/model_format/__init__.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,10 @@
# SPDX-License-Identifier: LGPL-3.0-or-later
from .common import (
PRECISION_DICT,
)
from .env_mat import (
EnvMat,
)
from .network import (
EmbeddingNet,
NativeLayer,
Expand All @@ -9,10 +15,12 @@
)

__all__ = [
"EnvMat",
"EmbeddingNet",
"NativeLayer",
"NativeNet",
"load_dp_model",
"save_dp_model",
"traverse_model_dict",
"PRECISION_DICT",
]
24 changes: 24 additions & 0 deletions deepmd_utils/model_format/common.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,24 @@
# SPDX-License-Identifier: LGPL-3.0-or-later
from abc import (
ABC,
)

import numpy as np

PRECISION_DICT = {
"float16": np.float16,
"float32": np.float32,
"float64": np.float64,
"half": np.float16,
"single": np.float32,
"double": np.float64,
}
DEFAULT_PRECISION = "float64"


class NativeOP(ABC):
"""The unit operation of a native model."""

def call(self, *args, **kwargs):
"""Forward pass in NumPy implementation."""
raise NotImplementedError
129 changes: 129 additions & 0 deletions deepmd_utils/model_format/env_mat.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,129 @@
# SPDX-License-Identifier: LGPL-3.0-or-later
from typing import (
Optional,
Union,
)

import numpy as np

from .common import (
NativeOP,
)


def compute_smooth_weight(
distance: np.ndarray,
rmin: float,
rmax: float,
):
"""Compute smooth weight for descriptor elements."""
min_mask = distance <= rmin
max_mask = distance >= rmax
mid_mask = np.logical_not(np.logical_or(min_mask, max_mask))
uu = (distance - rmin) / (rmax - rmin)
vv = uu * uu * uu * (-6.0 * uu * uu + 15.0 * uu - 10.0) + 1.0
return vv * mid_mask + min_mask


def _make_env_mat(
nlist,
coord,
rcut: float,
ruct_smth: float,
):
"""Make smooth environment matrix."""
nf, nloc, nnei = nlist.shape
# nf x nall x 3
coord = coord.reshape(nf, -1, 3)
mask = nlist >= 0
nlist = nlist * mask
# nf x (nloc x nnei) x 3
index = np.tile(nlist.reshape(nf, -1, 1), (1, 1, 3))
coord_r = np.take_along_axis(coord, index, 1)
# nf x nloc x nnei x 3
coord_r = coord_r.reshape(nf, nloc, nnei, 3)
# nf x nloc x 1 x 3
coord_l = coord[:, :nloc].reshape(nf, -1, 1, 3)
# nf x nloc x nnei x 3
diff = coord_r - coord_l
# nf x nloc x nnei
length = np.linalg.norm(diff, axis=-1, keepdims=True)
# for index 0 nloc atom
length = length + ~np.expand_dims(mask, -1)
t0 = 1 / length
t1 = diff / length**2
weight = compute_smooth_weight(length, ruct_smth, rcut)
env_mat_se_a = np.concatenate([t0, t1], axis=-1) * weight * np.expand_dims(mask, -1)
return env_mat_se_a, diff * np.expand_dims(mask, -1), weight


class EnvMat(NativeOP):
def __init__(
self,
rcut,
rcut_smth,
):
self.rcut = rcut
self.rcut_smth = rcut_smth

def call(
self,
nlist: np.ndarray,
coord_ext: np.ndarray,
atype_ext: np.ndarray,
davg: Optional[np.ndarray] = None,
dstd: Optional[np.ndarray] = None,
) -> Union[np.ndarray, np.ndarray]:
"""Compute the environment matrix.
Parameters
----------
nlist
The neighbor list. shape: nf x nloc x nnei
coord_ext
The extended coordinates of atoms. shape: nf x (nallx3)
atype_ext
The extended aotm types. shape: nf x nall
davg
The data avg. shape: nt x nnei x 4
dstd
The inverse of data std. shape: nt x nnei x 4
Returns
-------
env_mat
The environment matrix. shape: nf x nloc x nnei x 4
switch
The value of switch function. shape: nf x nloc x nnei
"""
em, sw = self._call(nlist, coord_ext)
nf, nloc, nnei = nlist.shape
atype = atype_ext[:, :nloc]
if davg is not None:
em -= davg[atype]
if dstd is not None:
em /= dstd[atype]
return em, sw

def _call(
self,
nlist,
coord_ext,
):
em, diff, ww = _make_env_mat(nlist, coord_ext, self.rcut, self.rcut_smth)
return em, ww

def serialize(
self,
) -> dict:
return {
"rcut": self.rcut,
"rcut_smth": self.rcut_smth,
}

@classmethod
def deserialize(
cls,
data: dict,
) -> "EnvMat":
return cls(**data)
48 changes: 34 additions & 14 deletions deepmd_utils/model_format/network.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,9 +4,6 @@
See issue #2982 for more information.
"""
import json
from abc import (
ABC,
)
from typing import (
List,
Optional,
Expand All @@ -20,6 +17,12 @@
except ImportError:
__version__ = "unknown"

from .common import (
DEFAULT_PRECISION,
PRECISION_DICT,
NativeOP,
)


def traverse_model_dict(model_obj, callback: callable, is_variable: bool = False):
"""Traverse a model dict and call callback on each variable.
Expand Down Expand Up @@ -124,14 +127,6 @@ def load_dp_model(filename: str) -> dict:
return model_dict


class NativeOP(ABC):
"""The unit operation of a native model."""

def call(self, *args, **kwargs):
"""Forward pass in NumPy implementation."""
raise NotImplementedError


class NativeLayer(NativeOP):
"""Native representation of a layer.
Expand All @@ -156,12 +151,16 @@ def __init__(
idt: Optional[np.ndarray] = None,
activation_function: Optional[str] = None,
resnet: bool = False,
precision: str = DEFAULT_PRECISION,
) -> None:
self.w = w
self.b = b
self.idt = idt
prec = PRECISION_DICT[precision.lower()]
self.precision = precision
self.w = w.astype(prec) if w is not None else None
self.b = b.astype(prec) if b is not None else None
self.idt = idt.astype(prec) if idt is not None else None
self.activation_function = activation_function
self.resnet = resnet
self.check_type_consistency()

def serialize(self) -> dict:
"""Serialize the layer to a dict.
Expand All @@ -180,6 +179,7 @@ def serialize(self) -> dict:
return {
"activation_function": self.activation_function,
"resnet": self.resnet,
"precision": self.precision,
"@variables": data,
}

Expand All @@ -192,14 +192,28 @@ def deserialize(cls, data: dict) -> "NativeLayer":
data : dict
The dict to deserialize from.
"""
precision = data.get("precision", DEFAULT_PRECISION)
return cls(
w=data["@variables"]["w"],
b=data["@variables"].get("b", None),
idt=data["@variables"].get("idt", None),
activation_function=data["activation_function"],
resnet=data.get("resnet", False),
precision=precision,
)

def check_type_consistency(self):
precision = self.precision

def check_var(var):
if var is not None:
# assertion "float64" == "double" would fail
assert PRECISION_DICT[var.dtype.name] is PRECISION_DICT[precision]

check_var(self.w)
check_var(self.b)
check_var(self.idt)

def __setitem__(self, key, value):
if key in ("w", "matrix"):
self.w = value
Expand All @@ -211,6 +225,8 @@ def __setitem__(self, key, value):
self.activation_function = value
elif key == "resnet":
self.resnet = value
elif key == "precision":
self.precision = value
else:
raise KeyError(key)

Expand All @@ -225,6 +241,8 @@ def __getitem__(self, key):
return self.activation_function
elif key == "resnet":
return self.resnet
elif key == "precision":
return self.precision
else:
raise KeyError(key)

Expand Down Expand Up @@ -338,6 +356,7 @@ def __init__(
neuron: List[int] = [24, 48, 96],
activation_function: str = "tanh",
resnet_dt: bool = False,
precision: str = DEFAULT_PRECISION,
):
layers = []
i_in = in_dim
Expand All @@ -351,6 +370,7 @@ def __init__(
idt=rng.normal(size=(ii)) if resnet_dt else None,
activation_function=activation_function,
resnet=True,
precision=precision,
).serialize()
)
i_in = i_ot
Expand Down
53 changes: 51 additions & 2 deletions source/tests/test_model_format_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,6 +10,7 @@

from deepmd_utils.model_format import (
EmbeddingNet,
EnvMat,
NativeLayer,
NativeNet,
load_dp_model,
Expand All @@ -19,18 +20,22 @@

class TestNativeLayer(unittest.TestCase):
def test_serialize_deserize(self):
for (ni, no), bias, ut, activation_function, resnet, ashp in itertools.product(
for (
ni,
no,
), bias, ut, activation_function, resnet, ashp, prec in itertools.product(
[(5, 5), (5, 10), (5, 9), (9, 5)],
[True, False],
[True, False],
["tanh", "none"],
[True, False],
[None, [4], [3, 2]],
["float32", "float64", "single", "double"],
):
ww = np.full((ni, no), 3.0)
bb = np.full((no,), 4.0) if bias else None
idt = np.full((no,), 5.0) if ut else None
nl0 = NativeLayer(ww, bb, idt, activation_function, resnet)
nl0 = NativeLayer(ww, bb, idt, activation_function, resnet, prec)
nl1 = NativeLayer.deserialize(nl0.serialize())
inp_shap = [ww.shape[0]]
if ashp is not None:
Expand Down Expand Up @@ -134,3 +139,47 @@ def test_save_load_model(self):
def tearDown(self) -> None:
if os.path.exists(self.filename):
os.remove(self.filename)


class TestEnvMat(unittest.TestCase):
def setUp(self):
# nloc == 3, nall == 4
self.nloc = 3
self.nall = 4
self.nf, self.nt = 1, 2
self.coord_ext = np.array(
[
[0, 0, 0],
[0, 1, 0],
[0, 0, 1],
[0, -2, 0],
],
dtype=np.float64,
).reshape([1, self.nall * 3])
self.atype_ext = np.array([0, 0, 1, 0], dtype=int).reshape([1, self.nall])
# sel = [5, 2]
self.nlist = np.array(
[
[1, 3, -1, -1, -1, 2, -1],
[0, -1, -1, -1, -1, 2, -1],
[0, 1, -1, -1, -1, 0, -1],
],
dtype=int,
).reshape([1, self.nloc, 7])
self.rcut = 0.4
self.rcut_smth = 2.2

def test_self_consistency(
self,
):
rng = np.random.default_rng()
nf, nloc, nnei = self.nlist.shape
davg = rng.normal(size=(self.nt, nnei, 4))
dstd = rng.normal(size=(self.nt, nnei, 4))
dstd = 0.1 + np.abs(dstd)
em0 = EnvMat(self.rcut, self.rcut_smth)
em1 = EnvMat.deserialize(em0.serialize())
mm0, ww0 = em0.call(self.nlist, self.coord_ext, self.atype_ext, davg, dstd)
mm1, ww1 = em1.call(self.nlist, self.coord_ext, self.atype_ext, davg, dstd)
np.testing.assert_allclose(mm0, mm1)
np.testing.assert_allclose(ww0, ww1)

0 comments on commit d1c0074

Please sign in to comment.