Skip to content

Commit

Permalink
Update from facebook (pytorch#7696)
Browse files Browse the repository at this point in the history
* Fix handling of empty batches in SumReduceDimsOp

As titled

* Deferrable async_scheduling finishRun fix

Proper order of finishing run operations in deferrable_async_scheduling net

* Simplify exception handling in async_scheduling

Simplify exception handling, no need to busy wait, thread that processes the
last task can finish the run

* [C2]worker_coordinator_memorize_worker_ids

As titled. This is related to T28689868, where the number of blobs we want to create is equal to the number of worker ids

* Add unit test for nets with no type set

* Ignore total length argument in sympolic_pad_packed_sequence

1- There was a mistake in the code that total_length was added to the wrong symbolic function (pack_padded_sequence) instead of (pad_packed_sequence)
2- No need to throw an exception if total_length is given since it is only used to enable data_parallel training on multi-gpus and doesn't have anything to do with onnx export, so just ignore it. https://fburl.com/tk4gciqp

* Add support for MKLDNN to async_scheduling

Just add MKLDNN as a possible CPU option to async_scheduling's pool function

* [AuFL][ensemble] support branch output for prediction

This diff supports using predictions from different branches and thus enables model ensembling (not fully independent).

* Fix a bug in add_loss in layer_model_helper

As titled.

* Support lradaption for adam

1.lr adaption operator
2.apply to dense adam

* Perf tweaks for async_scheduling

Restore single pool option + remove unnecessary (no-ops) calls

* add quantization to SparseSimdAdagradOp

add a bunch of quantization signatures to SparseSimdAdagradOp, implementations to come next

* [sr] [codemod] Change all SR callsites to use new API

@allow-large-files

This diff refactors all callsites of SR to use the slightly changed API introduced in the diff below. Really what this means is that you need to include the correct header. Also if you were using `ClientFactory::newFactory` you need to not prefix it with `ClientFactory::`.

```
cd ~/fbsource/fbcode
find ./ -type f -exec sed -i -e 's:#include "servicerouter/client/cpp2/ClientFactory.h":#include "servicerouter/client/cpp2/ServiceRouter.h":' -e 's:#include <servicerouter/client/cpp2/ClientFactory.h>:#include <servicerouter/client/cpp2/ServiceRouter.h>:' -e 's/ClientFactory::newFactory(/newFactory(/g' {} \;
```

Also manually fixed spots that couldn't be done automatically (or broke because they depended on transitive includes).

* Back out "Fix handling of empty batches in SumReduceDimsOp"

Original commit changeset: 282da1730cc2 This commit is blocking the
Github->fbcode sync, which really needs to get merged ASAP. D7881937 which this
diff depends on will be reverted in the sync D7990948 which causes this to
break. The sync diff cannot be patched with this reversion because it must be
landed against base revision 5c8c099 , and D7881937 must not be included in the
sync diff because it is breaking GPU tests that are not available in sandcastle
: https://ci.pytorch.org/jenkins/job/caffe2-builds/job/py2-cuda8.0-cudnn6-ubuntu16.04-test/3638/console
for one example.

* Add the flow to support operator benchmark

1) generate model with the operator 2) upload to everstore 3) generate model spec into json file 4) start running the benchmark

* [tum][gpu] Connect DPM trainer with flow and unit tests

This diff:
- Fix some small bugs for Yiming's recent changes to parallelizer, so it suits real use cases.
- Add correct tags to the TUM code, so we can do data parallel transform
- pass extra info when instantiation.
- add unit test for using DPM in TUM model

After this diff, we can do simple box, multi-gpu fully-sync trainer for TUM in Fblearner workflow, but may still need to do speed benchmarking.

* w/o normalized lradaption for adam dense only

The previous lr adaption includes a normalization step when performing the dot product operation. This is not exactly same as what is proposed in the paper. I add normalization as an option. Without it, the operator performs exactly what the paper proposed. With the option, we add the normalization step

* [fb] Use SharedPromise in DeferrableAsyncSchedulingNet

This code is to simplify DeferrableAsyncSchedulingNet by removing condition
variable + small fixes

* [tum] implement cuda sparseLengthsMean and LengthsMean

as title

* Adding an optional parameter to allow use of protobufs in InferShapesAndTypes function.

Adding an optional parameter to allow use of protobufs in InferShapesAndTypes function.

* Move feature_to_index to FeatureSpec.feature_to_index

move feature_to_index to FeatureSpec.feature_to_index to avoid override other fields

* [Caffe2] Rename bytes_moved to bytes_written

Just a rename in preparation for supporting bytes_read.

* [c2] fix ReduceFrontSumOp for empty case by setting 0

otherwise, it may use the results from last iteration when it's empty batch.

* [Caffe2] [Int8] Improve Intel CPU performance

* [Easy] Improve PrependDim op logging

as titled

* DBFileReader expand db_path using os.path.expanduser(..)

Since there are a lot of possible use cases of `DBFileReader` to read from user home path, like `~/local/sample.db`, I want to save people's trouble of calling `os.path.expanduser(db_path)` themselves.

* [Caffe2] Add bytes_read to cost structure

We're adding analytical read bytes to cost functions.  This extends the structure accordingly for all CostInference defined operators.
Additionally, some small bug fixes were performed:
1) Cost functions now extract type information of operands instead of assuming float

* Fix sleef on aarch64 for hhvm

@bypass-lint

Rename flag

* Remove duplicated part in caffe2/ideep/operators/conv_op.cc

should be sync error

* Rename test helper function test_adagrad_sparse_helper to adagrad_sparse_test_helper to avoid confusing pytest
  • Loading branch information
bddppq authored May 20, 2018
1 parent 2cb096a commit f94ae3b
Show file tree
Hide file tree
Showing 40 changed files with 1,293 additions and 329 deletions.
2 changes: 2 additions & 0 deletions aten/src/ATen/cpu/vec256/vec256_float.h
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,8 @@
#include <sleef.h>
#endif

#include <iostream>

namespace at {
namespace vec256 {
namespace {
Expand Down
97 changes: 97 additions & 0 deletions binaries/bench_gen/bench_gen.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,97 @@
#!/usr/bin/env python

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals

import argparse

from caffe2.python.model_helper import ModelHelper
from caffe2.python.predictor import mobile_exporter
from caffe2.python import workspace, brew


def parse_kwarg(kwarg_str):
key, value = kwarg_str.split('=')
try:
value = int(value)
except ValueError:
try:
value = float(value)
except ValueError:
pass
return key, value


def main(args):
# User defined keyword arguments
kwargs = {"order": "NCHW"}
kwargs.update(dict(args.kwargs))

model = ModelHelper(name=args.benchmark_name)

op_type = args.operator # assumes a brew type op name
input_name = args.input_name
output_name = args.output_name

iters = int(args.iters)
for i in range(iters):
input_blob_name = input_name + (str(i) if i > 0 and args.chain else '')
output_blob_name = output_name + str(i + 1)
add_op = getattr(brew, op_type)
add_op(model, input_blob_name, output_blob_name, **kwargs)
if args.chain:
input_name, output_name = output_name, input_name

workspace.RunNetOnce(model.param_init_net)

init_net, predict_net = mobile_exporter.Export(
workspace, model.net, model.params
)

if args.debug:
print("init_net:")
for op in init_net.op:
print(" ", op.type, op.input, "-->", op.output)
print("predict_net:")
for op in predict_net.op:
print(" ", op.type, op.input, "-->", op.output)

with open(args.predict_net, 'wb') as f:
f.write(predict_net.SerializeToString())
with open(args.init_net, 'wb') as f:
f.write(init_net.SerializeToString())


if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Utilitity to generate Caffe2 benchmark models.")
parser.add_argument("operator", help="Caffe2 operator to benchmark.")
parser.add_argument("-b", "--blob",
help="Instantiate a blob --blob name=dim1,dim2,dim3",
action='append')
parser.add_argument("--context", help="Context to run on.", default="CPU")
parser.add_argument("--kwargs", help="kwargs to pass to operator.",
nargs="*", type=parse_kwarg, default=[])
parser.add_argument("--init_net", help="Output initialization net.",
default="init_net.pb")
parser.add_argument("--predict_net", help="Output prediction net.",
default="predict_net.pb")
parser.add_argument("--benchmark_name",
help="Name of the benchmark network",
default="benchmark")
parser.add_argument("--input_name", help="Name of the input blob.",
default="data")
parser.add_argument("--output_name", help="Name of the output blob.",
default="output")
parser.add_argument("--iters",
help="Number of iterations to run the operator.",
default="1")
parser.add_argument("-d", "--debug", help="Print debug information.",
action='store_true')
parser.add_argument("-c", "--chain",
help="Chain ops together (create data dependencies)",
action='store_true')
args = parser.parse_args()
main(args)
16 changes: 10 additions & 6 deletions binaries/benchmark_helper.cc
Original file line number Diff line number Diff line change
Expand Up @@ -69,12 +69,16 @@ void setDeviceType(caffe2::NetDef* net_def, caffe2::DeviceType& run_dev) {

void setOperatorEngine(caffe2::NetDef* net_def, const string& backend) {
if (backend != "builtin") {
string engine = backend == "nnpack" ? "NNPACK"
: backend == "eigen" ? "EIGEN"
: backend == "mkl"
? "MKLDNN"
: backend == "cuda" ? "CUDA"
: backend == "default" ? "" : "NONE";
string engine = backend == "nnpack"
? "NNPACK"
: backend == "eigen" ? "EIGEN"
: backend == "mkl" ? "MKLDNN"
: backend == "cuda"
? "CUDA"
: backend == "dnnlowp" ? "DNNLOWP"
: backend == "dnnlowp_16"
? "DNNLOWP_16"
: backend == "default" ? "" : "NONE";
CAFFE_ENFORCE(engine != "NONE", "Backend is not supported");
for (int i = 0; i < net_def->op_size(); i++) {
caffe2::OperatorDef* op_def = net_def->mutable_op(i);
Expand Down
32 changes: 29 additions & 3 deletions caffe2/core/net_async_base.cc
Original file line number Diff line number Diff line change
Expand Up @@ -36,6 +36,11 @@ CAFFE2_DEFINE_bool(
true,
"Select next non-busy stream");

CAFFE2_DEFINE_bool(
caffe2_net_async_use_single_pool,
false,
"Use single pool for all devices");

namespace caffe2 {

thread_local std::vector<int> AsyncNetBase::stream_counters_;
Expand Down Expand Up @@ -109,7 +114,12 @@ std::shared_ptr<TaskThreadPool> AsyncNetBase::pool_getter(

std::shared_ptr<TaskThreadPool> AsyncNetBase::pool(
const DeviceOption& device_option) {
if (device_option.device_type() == CPU) {
if (FLAGS_caffe2_net_async_use_single_pool) {
return pool_getter(cpu_pools_, CPU, -1, num_workers_);
}
if (device_option.device_type() == CPU ||
device_option.device_type() == MKLDNN ||
device_option.device_type() == IDEEP) {
auto numa_node_id = device_option.numa_node_id();
CAFFE_ENFORCE(
numa_node_id >= -1 &&
Expand Down Expand Up @@ -141,8 +151,8 @@ int AsyncNetBase::stream(int task_id) {
do {
stream_id = stream_counters_[gpu_id]++;
stream_counters_[gpu_id] %= FLAGS_caffe2_streams_per_gpu;
} while (!isStreamFree(task_id, stream_id) &&
FLAGS_caffe2_net_async_check_stream_status);
} while (FLAGS_caffe2_net_async_check_stream_status &&
!isStreamFree(task_id, stream_id));
}
return stream_id;
}
Expand Down Expand Up @@ -226,6 +236,16 @@ void AsyncNetBase::asyncWait(
first_op->WaitEvents(events, stream_id);
}

void AsyncNetBase::reset() {
for (auto& op : GetOperators()) {
op->ResetEvent();
}
#ifdef CAFFE2_USE_EXCEPTION_PTR
std::unique_lock<std::mutex> exception_lock(exception_mutex_);
caught_exception_ = nullptr;
#endif // CAFFE2_USE_EXCEPTION_PTR
}

void AsyncNetBase::storeExceptionPtr() {
#ifdef CAFFE2_USE_EXCEPTION_PTR
std::unique_lock<std::mutex> exception_lock(exception_mutex_);
Expand All @@ -236,6 +256,12 @@ void AsyncNetBase::storeExceptionPtr() {
}

void AsyncNetBase::run(int task_id, int stream_id) {
// Optionally insert async wait ops,
// skip when using --caffe2_net_async_finish_chain -
// all parents are guaranteed to be finished
if (!FLAGS_caffe2_net_async_finish_chain) {
asyncWait(task_id, stream_id, parents(task_id));
}
std::string err_msg;
for (auto& op_id : chains_[task_id]) {
auto& op = operators_[op_id];
Expand Down
10 changes: 10 additions & 0 deletions caffe2/core/net_async_base.h
Original file line number Diff line number Diff line change
Expand Up @@ -13,6 +13,14 @@
#include "caffe2/utils/proto_utils.h"
#include "caffe2/utils/thread_pool.h"

CAFFE2_DECLARE_int(caffe2_streams_per_gpu);
CAFFE2_DECLARE_bool(caffe2_net_async_finish_chain);
CAFFE2_DECLARE_int(caffe2_net_async_max_gpus);
CAFFE2_DECLARE_int(caffe2_net_async_max_numa_nodes);
CAFFE2_DECLARE_int(caffe2_net_async_cpu_pool_size);
CAFFE2_DECLARE_bool(caffe2_net_async_check_stream_status);
CAFFE2_DECLARE_bool(caffe2_net_async_use_single_pool);

namespace caffe2 {

class AsyncNetExecutorHelper;
Expand Down Expand Up @@ -63,6 +71,8 @@ class AsyncNetBase : public NetBase {

bool isStreamFree(int task_id, int stream_id) const;

virtual void reset();

// Operator/task graph
std::vector<OperatorBase*> operators_;
std::vector<dag_utils::OperatorNode> operator_nodes_;
Expand Down
5 changes: 0 additions & 5 deletions caffe2/core/net_async_polling.cc
Original file line number Diff line number Diff line change
Expand Up @@ -64,11 +64,6 @@ void AsyncPollingNet::schedule(int task_id) {
task_timers_[task_id]->MicroSeconds());
}

// Non-blocking wait, setups scheduling of dependent async computations;
// canSchedule ensures that there's no busy wait,
// for CUDA events we need to insert CUDA event synchronization to ensure
// that async CUDA computations are executed in correct order
asyncWait(task_id, stream_id, parents(task_id));
try {
if (FLAGS_caffe2_dag_net_collect_stats) {
Timer run_time;
Expand Down
87 changes: 40 additions & 47 deletions caffe2/core/net_async_scheduling.cc
Original file line number Diff line number Diff line change
Expand Up @@ -15,8 +15,9 @@ AsyncSchedulingNet::AsyncSchedulingNet(
}

void AsyncSchedulingNet::reset() {
AsyncNetBase::reset();

processed_tasks_num_ = 0;
cleanup_ = false;
success_ = true;

for (auto task_id = 0; task_id < tasksNum(); ++task_id) {
Expand All @@ -37,8 +38,10 @@ void AsyncSchedulingNet::schedule(int task_id) {
const auto& device_option = event(task_id).GetDeviceOption();
pool(device_option)->run([this, task_id]() {
if (success_) {
int stream_id = stream(task_id);
asyncWait(task_id, stream_id, parents(task_id));
int stream_id = 0;
if (FLAGS_caffe2_streams_per_gpu > 1) {
stream_id = stream(task_id);
}
try {
run(task_id, stream_id);
} catch (const std::exception& e) {
Expand All @@ -51,9 +54,14 @@ void AsyncSchedulingNet::schedule(int task_id) {
for (auto child_id : children(task_id)) {
int parent_count = updateParentCount(child_id);
if (parent_count == 0) {
if (!success_ || cleanup_ ||
FLAGS_caffe2_net_async_always_schedule_child ||
canSchedule(child_id)) {
// Schedule a child if:
// - there is failure, we skip an op execution and finish the job
// - forced scheduling though --caffe2_net_async_always_schedule_child
// - --caffe2_net_async_finish_chain is set, in this case parents are
// guaranteed to be finished
// - in all other cases, check parents with canSchedule
if (!success_ || FLAGS_caffe2_net_async_always_schedule_child ||
FLAGS_caffe2_net_async_finish_chain || canSchedule(child_id)) {
schedule(child_id);
} else {
const auto& device_option = event(child_id).GetDeviceOption();
Expand All @@ -64,37 +72,8 @@ void AsyncSchedulingNet::schedule(int task_id) {
}
}

if (success_) {
if (task_count == tasksNum()) {
// All tasks are finished, polling thread is sleeping;
// only one thread enters here
finalizeEvents();
finishRun();
return;
}
} else {
// Before setting running_ to false and notifying waiters we need to
// 1. Ensure that only one thread does the cleanup
// 2. Ensure that all other pending tasks in workers and polling threads
// are finished and
// 3. Ensure that all tasks that were not scheduled have their events set
{
std::unique_lock<std::mutex> cleanup_lock(cleanup_mutex_);
if (cleanup_) {
return;
}
cleanup_ = true;
}

// Errors are not recoverable and happen in exceptional cases,
// ok to busy wait
while (processed_tasks_num_ != tasksNum()) {
}

// Make sure all events are set, wait for scheduled events
if (task_count == tasksNum()) {
finalizeEvents();

// Notify observers and waiters
finishRun();
}
});
Expand All @@ -110,7 +89,7 @@ void AsyncSchedulingNet::pollAndSchedule(int task_id) {
// - parents are ready
// - we failed / cleanup started (no ops will run)

if (can_schedule || cleanup_ || !success_ || parent_failed) {
if (can_schedule || !success_ || parent_failed) {
schedule(task_id);
} else {
const auto& device_option = event(task_id).GetDeviceOption();
Expand All @@ -128,24 +107,38 @@ int AsyncSchedulingNet::updateParentCount(int child_id) {
}

void AsyncSchedulingNet::finishRun() {
{
std::unique_lock<std::mutex> lock(running_mutex_);
running_ = false;
}

// notify observers and waiters
StopAllObservers();
running_ = false;
running_cv_.notify_all();
}

bool AsyncSchedulingNet::DoRunAsync() {
std::unique_lock<std::mutex> lock(running_mutex_);
CAFFE_ENFORCE(!running_, "Concurrent RunAsync calls");
running_ = true;
reset();
bool AsyncSchedulingNet::RunAsync() {
try {
std::unique_lock<std::mutex> lock(running_mutex_);
if (running_) {
LOG(ERROR) << "Detected concurrent runs";
return false;
}
running_ = true;
reset();

StartAllObservers();
StartAllObservers();

for (auto task_id = 0; task_id < tasksNum(); ++task_id) {
if (parents(task_id).empty()) {
schedule(task_id);
for (auto task_id = 0; task_id < tasksNum(); ++task_id) {
if (parents(task_id).empty()) {
schedule(task_id);
}
}
} catch (const std::exception& e) {
LOG(ERROR) << "Exception while starting an async run: " << e.what();
finalizeEvents();
finishRun();
return false;
}

if (tasksNum() == 0) {
Expand Down
7 changes: 2 additions & 5 deletions caffe2/core/net_async_scheduling.h
Original file line number Diff line number Diff line change
Expand Up @@ -15,11 +15,11 @@ class AsyncSchedulingNet : public AsyncNetBase {
void Wait() override;

protected:
bool DoRunAsync() override;
bool RunAsync() override;

void pollAndSchedule(int task_id);
void schedule(int task_id);
void reset();
void reset() override;
virtual void finishRun();
int updateParentCount(int child_id);

Expand All @@ -28,9 +28,6 @@ class AsyncSchedulingNet : public AsyncNetBase {
std::atomic<bool> running_;
std::atomic<bool> success_;

std::mutex cleanup_mutex_;
std::atomic<bool> cleanup_;

std::atomic<int> processed_tasks_num_;

DISABLE_COPY_AND_ASSIGN(AsyncSchedulingNet);
Expand Down
Loading

0 comments on commit f94ae3b

Please sign in to comment.